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Abstract

A new "discrete elements" (LN) transport method is derived and
compared to the discrete ordinates SN method, theoretically and by
numerical experimentation. The discrete elements method is more accurate
than discrete ordinates and strongly ameliorates ray effects for the
practical problems studied. The discrete elements method is shown to be
more cost effective, in terms of execution time with comparable storage
to attain the same accuracy, for a one-dimensional test case using
linear characteristic spatial quadrature. In a two-dimensional test

case, a vacuum duct in a shield, L_ is more consistently convergent

N
toward a Monte Carlo benchmark solution than SN’ using step
characteristic spatial quadrature. An analysis of the interaction of
angular and spatial quadrature in xy-geometry indicates the desirability
of using linear characteristic spatial quadrature with the LN method.
The discrete elements method is based on discretizing the Boltzmann
equation over a set of elements of angle. The zeroth and first angular
moments of the directional flux, over each element, are estimated by
numerical quadrature and yield a flux-weighted average streaming
direction for the element. (Data for this estimation are fluxes in fixed
directions calculated as in SNJ e spatial quadrature then propagates
the element flux in this "steered" direction. Since the quadrature
directions are not fixed, but are coupled to the fluxes, the method
strongly ameliorates ray effect. This is verified using the square-in-a-
square test case originated by Lathrop. A variety of spatial, angqular,
and element quadrature schemes are evaluated for both LN and SN’ The

best discrete elements method uses a hybrid of Gauss-Christoffel polar

and composite 3-point Gauss-Legendre azimuthal quadrature.
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I. Introduction

The research reported hgre has developed a new numerical method for
solution of the Boltzmann neutral particle transport equation, the
method of discrete elements (LN), and tested its performance on problems
in one- and two-dimensional Cartesian coordinates. These problems have

been selected as a proof of concept.

A. Backgtound

The Boltzmann equation, in the form of equation (I-1), is a balance
equation for the flux of neutral particles at any point in seven-
dimensional phase space. This flux, ¥, is a function of particle
position (x,y,z), direction of particle motion (0,¢), particle speed (v)
or energy (E), and time (t). For the monoenergetic, steady state, one-
and two-dimensional problems considered in this reseagch, the time and
energy dependences are suppressed, as are one (z) or two (y,?) of the

spatial dependences.
»
Q-V¢-+0T¢ = coT¢+S (I-1)

where

dt is the total cross-section for interaction (absorption or scatter)

g s is the scattering cross-section

I-1
e A T N T T et T e Tt e e e e L e e e e e e S
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fi is the direction of motion unit vector, (6,¢) in spherical
coordinates, and

¢ is the scalar flux, and is related to the (directionally dependent)

flux, ¥, by

¢ (x,y,2) =S w(x,y,z,i) ag (I-2)
4n

Equation (I-1) represents the balance between loss rate (left side)
and gain rate (right side) which exists at each point of phase space
under steady state conditions. The first term on the left is the loss
rate of particles due to divergence, or spreading of the flux. The
second term is the loss rate due to interactions of the particles with
the medium, either absorption, which destroys the particle, or scatter,
which changes its direction of motion (and, more generally, energy,
although that dependence is suppressed here), removing the particle from
its original element of phase space. The first term on the right is the
gain rate due to particles which are present at the given space
location, but traveling in other directions, and which scatter, changing
to the given direction of motion. The final term is the gain rate due to
creation of new particles by any source mechanism, for example,
radioactive decay.

Actually, the (phase space) flux, ¥, is usually of interest only in
so far as it is needed to obtain its zeroth angular moment, the scalar

flux, ¢, or its first angular moment, the (vector) current, J. The

.. . - . . e e g - L -
N .. Lt . -
BRI I R S e LIPS IN
) .. o A P N TR
L e PRI .

R e R
D TR O N N R S A R I SR
PRI, P P PRI UL AL N I TSP VR P UL AP WL N S

o




1d

2.

Y.

r

P

]

scalar flux is of physical interest because it determines rates of
reactions, such as fission or neutron activation. The current is of
physical interest in determining the leakage rates of particles from one
region to another, through boundary surfaces.

Equatgon (I-1) is an integro-differential equation, solution of
which is particularly difficult. It is solved (except for very simple
cases) by numerical means, such as the method of discrete ordinates,
rather than analytically.

Since its development in the 1960's, the discrete ordinates SN
method of numerical neutral particle transport has been a mainstay of
nuclear design. Its simple, iterative computational structure supports
computer solution of problems with large spatial grids and multiple
energy groups without prohibitive storage requirements. This is
accomplished by treating the spatial and angular integrations, or
quadratures, independently. Finite element methods which couple the
spatial and angular representations of the flux have the pétential for
accurate solutions with coarse meshes, but are complicated and very
costly in storage.

Discrete ordinates methods have serious drawbacks, however. The use
of discretized angular and spatial representations inevitably entails
truncation errors. These often take the form of random errors which
limit the accuracy of the method, but when the truncation errors appear
systematically, they can cause results which are gqualitatively
incorrect. Such systematic errors have been known as ray effects, since
the discrete ordinates method represents particle motion only in fixed
directions, or "rays". Another limitation of discrete ordinates is that

it provides poor accuracy for some types of problems which are important

I-3




in nuclear design. Streaming ducts in shields cause such difficulties
because the discrete ordinates angular representation is not well
adapted to a distribution of flux which is strongly peaked along the
axis of the duct. If the duct is not aligned along one of the quadrature
set directions, the discrete ordinates calculation may be very
insensitive to the presence of the duct. Monte Carlo methods can be used
in such cases, but are computationally costly. The performance of the sN
method is sensitive to the choice of the angular quadrature direction
set, in a problem-dependent way. One of the limitations of the method is
that when different quadrature sets give widely varying results, it is
difficult to have much confidence in any of them.

The discretized spatial representation can also lead to systematic
errors which resalt in gqualitatively incorrect solutions, here called
"quasi-ray effect”. Recent péogress has been made in developing higher
order spatial quadrature schemes which redu?e these truncation errors.

Various schemes have been proposed for improving the performance of
discrete ordinates calculations. Some of these are reviewed in the body

of this report.

B. Statement of the Problem

The objective of this research is to derive the discrete elements
equations, and to develop, implement, and evaluate the performance of
the discrete elements method. The method should use an improved angular
representation which couples angular and spatial quadrature in order to

reduce truncation errors and ray effects, while retaining the

computational simplicity of the SN method.




o C. Scope

) The scope of the research includes development and demonstration of
X the discrete elements method and analysis of its computational costs in
terms of computer storage and execution time. Its performance is
compared to discrete ordinates calculations with various quadrature
sets. The method is tested with various angular and spatial quadratures
and the optimum scheme identified. Two l-dimensional and two
2-dimensional test problems are used. These test problems incorporate

the following assumptions:

Geometries: 1-D and 2-D Cartesian

Sources:

Uniformly distributed (by region)

. Isotropic

‘ ~ Media:

Q' Uniform by region

? Isotropic

el Non-Multiplying
3 - Scatter: Isotropic (in Lab Frame)

4
} - Energy Dependence: Monoenergetic (i.e. One Group)
- Time Dependence: Steady State

; Since the discrete element method retains much of the computational
: structure of discrete ordinates methods, the extension to multiple
{ ’ energy groups, anisotropic scatter, and time dependent problems is
. immediate and so need not be explicitly demonstrated here.

¥
X
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LE D. General Approach and Sequence of Presentation

>

2\ The discrete elements equations are derived, in chapter II, by
l: discretizing the integro-differential form of the Boltzmann transport
<

o
"‘-'.

equation over elements of solid angle. The computer algorithm for the

method is then developed as an extension of the discrete ordinates
algorithm. Angular quadrature sets for SN methods are reviewed in

chapter III, and corresponding quadrature grids for LN are proposed.

EIPS
A_Amﬁr‘r

Three quadrature rules are considered in chapter IV. These are used

~
,: within each element of angle for coupling the angular and spatial
Q)
N quadratures. Potential advantages and disadvantages of the three methods
"y
are evaluated. Chapter V reviews the spatial quadrature schemes that are
*S to be used in the testing in later chapters. The review is conducted in
]
A
g detail in order to support the later analysis of the performance of the
s %
discrete elements method using these schemes. Smoothness, pointwise
o’ :
s accuracy, global accuracy, and tendencies toward systematic error are
o
:; considered. Having established the angular and spatial quadratures
*
available, the interaction of the two forms of quadrdture is .
L .
A
:{ investigated in chapter VI. Formal definitions are given for ray effect
Y :
”: and quasi-ray effect, and examples of each are given. In evaluating the
. performance of the LN method, it is important to be able to distinguish
3]
, between faults of the angular representation and quadrature and faults
13, ’
' of the spatial discretization and quadrature.
‘ Since there are many possible combinations of quadrature schemes to
-
:- be employed as a discrete elements method, chapter VII defines a
ﬁf notational system for identifying the different schemes, and discusses
i' the possibilities for optimization of the method. Chapter VIII then
-~
ko .
L analyses the computational costs of implementing these various schemes.
S
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The discrete elements method was programmed and tested in both one-

and two-dimensional Cartesian geometry. Chapter IX presents an analysis
of the results for the one-dimensional problems: a pure absorber (no
scatter, no source) with an isotropic flux incident on one side; and a
highly scattering source region with a low scatter shield and vacuum
outer boundary. Chapter X treats two 2-dimensional problems: a square
source.in a larger square absorber; and a shielded source with a vacuum
duct in the shield. Both chapters present the results of calculations
with various LN schemes, as well as with competing SN schemes, and,
in most cases, analytic or Mohte Carlo benchmark solutions. The methods
are analyzed fdr accuracy, convergence, and cost-effectiveness. Causes
of the observed errors are also considered. Chapter XI summarizes the
conclusion§ drawn in the previous chapters and presents recommendations

for use of the discrete element method and for future research.
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'$éx II. Derivation of the Discrete Elements Transport Method

This chapter presents the derivation of a new method of

:5 discretizing and solving the integro-differential form of the Boltzmann
3 neutral particle transport equation. The method has some features in
v common with the discrete ordinates sN method, but differs from it in two
: major ways. First, the Boltzmann equation is discretized over a
collection of elements of solid angle, rather than into a point-set of
- fixed directions as in SN' Second, thé mgthod of approximating and
‘EE solving the discrete element equations explicitly couples the angular
f dependence of the directional flux into tHe spatial quadrature scheme,
s0 that the directions of streaming are interpolat;d to better represent
g;: the motion.of the particles in each angular element. A motivation for
X this scheme is the anticipation that the steered streaming of the
discrete elements method should ameliorate the ray effects seen in the
i
'EE discrete ordinates method as a result of its fixed streaming directions.
at A. Angular Coordinates and Elements of Angle
)
'EiE . Three related angular coordinate systems are used here. These are:
o 1l - polar coordinates (8,4) where 8 is the polar angle,
. measured from the z-axis, and ¢ is the azimuthal angle, measured from
E;{ the x-axis toward the y-axis. '
N

2 - polar cosine / azimuthal angle coordinates (t,$¢) where

T = cos (0) and ¢ is the azimuthal angle, as above.

I1-1
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L 3 - direction cosine coordinates (u,N) where ¥ is the
. x~-direction cosine and N is the y-direction cosine.

These coordinates are related by

y T =cos (9) (I1-1)
’ w = sin ®) cos () =V1-t° cos (4) (11-2)
,; n = sin () sin ($) =3/1 -1 sin (¢) (I11-3)
a
Y] The transport equation will be discretized into a system of
X equations, each describing the flux over an element of angle. These
i elements of solid angle are like wedges or cones which together form the
. unit sphere of solid angle. The angular mesh used here is similar to a
‘: product quadrature set, and is formed by dividing the polar and
. azimuthal coordinates, independently, into segments. This is perhaps
i: most easily visualized as a partitioning of the surface of a globe along
ié lines of latitude and'of longitude. This partition maps as a rectangular
< mesh on the (1,¢) plane, where the weight of an element is propo?tional
ﬁ to its area. The element weight can also be expressed as the product of
‘2 the t-weight and the ¢ -weight:
ﬁ wk'1'= fD sin (0) 40 d¢ / 27 = AtkA¢ 1 /2 (II-4)
.r: m
3
o where Dm is.the domain of angle of the m'th discrete element and where
Ej the normalization factor is 271 rather than 4 7, since only the upper
,3 hemisphere of directions need be considered (due to the z-symmetry of
: xy-geometry). Except where explicitly needed, the indices, k and 1, will
-ﬁ be expressed as a single index, m, ranging from 1 to M.
5: I1-2
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B. Discretization of the (Angular) Flux

In order to discretize the the transport equation, it is useful to
first treat the flux, ¢ (x,y,7,¢). The flux may be considered as a union
of M funct{ons, wm(1,¢), each over a domain restricted to a single
angular mesh cell, Dm, of area wm. One reason for doing this is that
these functions could be approximated by a truncated power series
expansion. This representation of the flux as a piecewise polynomial is
similar to a finite elements method approach. Differences are (1) finite
elements typically uses basis elements which overlap in support and (2)
finite elements typically uses differentiability constraints, resulting
in coué&ing among the discretized equations, and thus requiring the
assembly of global matrices and solution of linear algebra problems. The
discrete elements method, however, uses basis elements that are disérete

in domain (non-overlapping) and does not require differentiability, or

even continuity, at the'boundaries between elements, thus avoiding the
complications and computational difficulties of finite elements.

Each flux, wm' can be characterized by its angular moments. The
zeroth and first moments are central to the discrete element method.

Notation for these flux moments is defined as follows:

F = (l/Wm) fD v(t,d) 4R (II-5)
m

3y = A/ S G b (e 6 (11-6)
m

where the directional unit vector, ﬁ, is defined as

f = M ; + n 3 + T ; (11-7)

II1-3
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Fm may be physically interpreted as the average flux of particles
traveling in ditections which fall within the m'th element of solid
angle. Similarly, the vector quantity, ﬁ¢(ﬁ),_is a (directionally
dependent) current. It bears the same relationship to the (scalar)
current vector, J, of diffusion theory as does the (directional) flux of

transport theory to the (scalar) flux of diffusion theory. Thus, gm is

tﬁe average current vector for the m'th element of solid angle.

C. Discretization of the Transport Equation

The transport equation is usually written in the form
QeVy+op = cod+S (11-8)

where ¢ = os / ot and ® is the scalar flux. Since the current is
physically meaningful, as discussed in the previous section, the first
step in the discretization is to bring the unit direction vector back

inside the divergence operator:
Ve (Ay) + op = cod+S (1I-9)

In order to discretize this transport equation, it is averaged over
each element of solid angle. More precisely, the zeroth angular moment
of the equation is taken, over the domain Dm' and normalized by the

weight, Wm:

' v a.l . oudd =
W, 'pv (ﬁ“’)d“+wm fp ovdil = cTo+s
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Since the spatial divergence and angular moment operators apply to
independent variables, the divergence operator may be taken outside the
integral. Recalling the definitions of Fm and gm, the result is

VeJd + OF = ¢co® + 8 (II-11)
-—m m

Two simplified forms of this equation are convenient. In a vacuum, it

reduces to

vsJ =8 (II-12)
and otherwise, since the cross~section is non-zero, it may be written
(11-13)

where Q is the effective source term, with dimensions of flux, defined

Q = cp+ g (11-14)

The scalar flux is eliminated from this system of equations by

expressing it in terms of the Fm:

o=/ yp ad = Zwmrm (11-15)
4n m
Thus
s
Q@ = S+ c Z L (1I-16)
m
11-5
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Equations (II-16) and (II-13), or (II-12) in vacuum, are the
discrete elements equations. These equations are exact, which is to say
that no approximations -have been made yet. If they were solved
analytically, the exact scalar flux and current would be obtained,
although the directional flux, ¥, would not be fully specified.
Approximations to the second or higher angular flux moments could be

devised, but the first moment is determined exactly by

=) W 3 (1I-17)
m

Although equation (II-16) assumes isotropic scatter, equation (1I-17)
could be used to include linearly anisotropic scatter in a
straightforward manner. For simplicity in implementing and evaluating

the discrete elements method, isotropic scatter is assumed.

D. The Flux-Weighted Mean Angle

The discrete elements equations appear very much like the discrefe
ordinates equations. In fact, if an assumption were made that the
discrete fluxes and currents were related by gm -ﬁmFm where the
direction (or "ordinate"), ﬁm' is a fixed direction established by the
choice of a.ngular quadrature set, then the discrete elements equations
would reduce to the discrete ordinates equations. Without this
assumption, the relationship of im and Fm defines the element mean

streaming direction to be

/ F (11-18)

I1I-6
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Substituting equations (II-5) and (II-6), and canceling the weights, W

m'
;o ad ad
R /D
2 = . (I1I-19)
S p(Q) 4Q
D
m

The components of ﬁm are designated by Bm, $ , u_, nm, and Tm.

m m

Equation (II-19) shows ﬁm to be the element flux-weighted mean angle. If
these angles were somehow known, then the well-developed techniques for
solving the discrete ordinates equations could be used to solve the

discrete elements equations. Numerical methods of approximating thefim

are considered next.

E. Approximating the Flux-Weighted Streaming Directions

The flux-weighted mean angles, ﬁm, are approximated by using
numerical quadrature rules to approximate the integrals in
equation (II-19)..Separation of variables in (t,¢) coordinates is
assumed within each discrete element, and the integrals in the two
coordinates are done independently. Thus, for each element, there is a

flux-weighted mean tm, and a flux-weiéhted mean<bm:

J ot¥(t) at

D
m

T, - (11-20)
S Y(t) dr

D
m

I op(d) d¢
D
o = L (I1I-21)
J V() as

P
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;Q These one-dimensional integrals are then approximated by a
.\.

i%' quadrature rule, e.g. Simpson's rule. The application of Simpson's rule
{
.:n requires knowledge of the flux in three fixed directions distributed in
:ﬁi azimuth and three fixed directions distributed polarly, within each
-

o element. Figure II-1 shows these fixed "auxiliary" directions, labelled
- as north, south, east, west, and center. This nomenclature is chosen to
;j: be analogous to the sides of a rectangle of latitude and longitude on
e the surface of a globe, eastward being increasing ¢, and northward being
2: increasing T.

-

X,

-}: North
- o

s + T

o West ¢ o Center ¢ East

2 |

ot o—

o South

$ —

‘-_, K
;;j Fig. II-1: Discrete Element Auxiliary Directions for Simpson's Rule

Y

s
.\;

4

" These directions are fixed by the choice of the discrete element
e angular mesh and the choice of Simpson's rule. The flux in these fixed
o
:}: directions therefore obeys the discrete ordinates transport equations

. and may be calculated using conventional SN spatial quadrature. The
o

. *
'“} source term for these auxiliary calculations is the same Q as is used in
:5 the discrete elements equations. The algorithm for this method is

s
A
r— considered in the next section.
AR
1? First, an alternative view of this approximation scheme is
.. considered. If the flux is expanded in a Taylor's series (in angle)
T
i; about the element center, (To,¢0), it is expressed as a series in powers
-t
b2, co . : .

:$ of (;,TO) and (¢.¢0). Retaining terms through quadratic, including the
D!

Cad
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W
. bilinear term, and performing the integrations in equation (II-19)
e 7 analytically, it may be shown that the bilinear term vanishes from both
S.: integrals. (Thus, the assumption of separability is actually required
:{: only if terms higher than quadratic are retained.) The use of Simpson's
rule is equivalent to finding a quadratic flux which equals the

:_: calculated fluxes at the five auxiliary directions and exactly
o« N

.\ evaluating the flux-weighted mean streaming direction for that flux.

""-:.' F. The Discrete Elements Method Algorithm

‘ ::' The discrete elements algc;rithm is based as closely as possible
hh

‘ upon that used in discrete ordinates. The essential feature of SN is the
;\, separation of the angular and spatial quadratures in an iterative
_. scheme. The source term, Q, is assumed known (from the previous
& iteration, or by a quess), and the spatial quad'rature is performed as a
-.E walk through a mesl:: of space cells, using the fixed directions of the
,_\? angular quadrature set. As the directional fluxes are found, they are
_,. folded into a new scalar flux at each point, thus pérforming the angular
:'_; quadrature to get an improved scalar flux. After the spatial walk is
::;:: completed, the source term, Q, is updated in preparation for the next
;'_. iteration. This scheme minimizes storage requirements so tt;at real
ES engineering problems can be fit into the computer. The discrete elements
;:} algorithm retains this structure, with its computational advantages, but
__::. adds the steps necessary to approximate the (no longer fixed) streaming
.j: directions and use them in the spatial quadrature of the element fluxes,
.

‘L:\: Fm. Once the streaming direction is found, the spatial quadrature of Fm
. uses the same methods as in SN'

-

<
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The discrete elements iterative scheme is:

1. Perform space quadrature in fixed directions to get
auxiliary directional fluxes.

2. Perform angular quadrature within each element of angle to
obtain the steered ﬁxn

3. Perform space quadrature in the (adjusted) directions to
get discrete element ("main") directional fluxes.

4. Accumulate the (weighted) main fluxes to get the scalar

flux at each space cell.

’

5. Update the source term, Q, and return for next iteration,

if the results are not yet converged.

The actual algorithm combines steps 1 through 4 in order to

minimize storage requirements, as follows:

Repeat

For each angular element
For each space cell
1. Step the associated auxiliary fluxes
across the cell
2. Find the mean direction for the main flux
3. Step the main flux across the cell
4. Accumulate the contribution to the scalar
flux in the "new=-flux" array
Next space cell
Next angular element

For each space cell
1. Test for convergence
2. Update the "old" scalar fluxes to the "new"
3. Re-evaluate the source, Q, for the cell
Next space cell

Until convergence criteria are met.

II-10
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G. Summarx

The discrete elements equations and algorithm have been developed
in this chapter. The method is simiiar to a finite elements method in
that the flux is represented by piecewise polynomial functions. The
advantages of finite elements may be expected, specifically, better
performance for problems with strong local sources and absorbers, since
the resulting ill-behaved flux functions are Better approximated by
the piecewise basis. Unlike the finite elements method, however, the
elements are discrete and are solved by an iterative spatial and angular
mesh walk rather than simultaneously with matrix algebra. In this
respect, the method retains the practicality of the discrete ordinates
method. Unlike SN' however, the spatial and angular quadratures are
explicitly coupled through the flux-weighted mean streaming angles. In
effect, this coupling steers the streaming in the average directions of
particle flow and should strongly ameliorate the ray effects caused by
using fixed streaming directions in SN'

Before the Lﬁ method can be implemented and evaluated by comparison
with SN' the details of the angular and spatial quadrature methods must
be filled in. Chapter III covers angular quadrature: choice of streaming

directions and weights in SN’ and choice of angular mesh in L Chapter

N’
IV covers the anguiar quadrature used within each element to evaluate
the mean streaming direction. Chapter V presents the spatial quadrature
methods used to step the fluxes across each spatial grid cell. Chapter

VI considers the interaction of the spatial and angular discretized

quadratures and the inherent deficiencies of discretization, such as ray

effect.

I1-11

A . . . B T S T X ST T, N -
R R . SR B L s T o=

. . . R DRI R
R I AP RN I NRITI G Tt Ul S St Thit TS T SgPs

B Lot .
AR NI N DL
RIS LRSI P I IR T

“,

N
- .t
o -




T ) v Y]
d -.‘.'-. [ _‘.'t‘ .‘:‘-'_ "4_"4,' 1 ‘/_4,"_1, Y

g
b

. L
,I.' ".'-"'-{,‘l'..-" L

- i nGns
1 (“I’.'..v".-".-

»

: ., vy J.l.\,-
LA

0]

‘o &

o

O WAL
L R R A
s a a8 22

I. l'

i Pl |-
y "v,‘n{ SN t

"

G

g ’ s
..f..o. .

)
[Yag Seb ML N

7

.. . - ., . e 9 oy - v ry re T
PRI S RIS RS SRR AN I S S A IR U A S D e e R R LI R B .

III. Angular Quadrature in the §N and EN Methods

In the discrete ordinates method, a quadrature set is a set of

directions, Qm’ and weights, wm' used to approximate angular integration

by the following quadrature rule:

foedhy ab = Zwm f(ﬁm) (I1I-1)
D m

m

where £(®) is any function, for example, ¥. If equation (III-1) is exact
n .

for £(&) =n .+ then the quadrature set is said to match the n'th

angular moment (with respect to the x-axis, in this case). This chapter

reviews some of the quadrature sets proposed or in use for SN' and

defines quadrature sets for use in one- and two-dimensional (slab and

Xy) geometry with the LN method.

A. Global Basis Functions and Gaussian Quadrature

SN conventionally uses quadrature sets which match as many angular
moments of the integrand as possible. (Various symmetry constraints are
usually imposed, as well.) If the integrand is well-behaved, in that it
has high orders of differentiability, then it can be expanded in a power
series in the.direction cosines. The quadrature set then integrates,
exactly (or nearly exactly), as many of the terms as possible. Gaussian
quadrature is an example in one dimension. This works well if the flux
is well represented by a truncated power series in the direction

cosines. An alternative approach is discussed next.

IIT-1




N B. Local Basis Functions and Composite Quadrature
LN models the flux with piecewise low order polynomials in one or
two angular coordinates, T and/or Y. These are integrated by low-order
methods such as Simpson's rule. The summation of the integrals over the
pieces constitutes a composite quadrature. If the integrand of a
5, composite integration is actually well-behaved, the composite
‘3 integration works well, although a Gaussian would be more cost
N effective. ﬁut, if the integrand is ill-behaved (in that its low-order .
»
:_..& derivatives are small but its high-order derivatives are large or
_:.:*-' unbounded), the composite rule improves in accuracy as more subintervals
A 4
‘ are used, while Gaussian quadrature may become less accurate as more
’; points are used.
o
-' C. Behavior of the Directional Flux in Heterogeneous Problems
::? A difficulty encountered in transport problems is that the flux, as
a function of angle,k can be rapidly varying (nearly discontinuous), and
. that the discontinuities can exist at angles that are not necessarily
I
E;'é parallel to material ‘interfaces. As an example, consider the flat
'.:E: control rod in an otherwise homogeneous reactor shown in figure III-l.
Suppose that fqr some energy group, the neutron mean free path is large
:: compared to the width of the control rod, but that the rod is gtrongly
"_. absorbing. Then the flux at point "A" is fairly uniform, except in those
i directions for which particles would have to have penetrated the rod. In
"\ these directions, the flux is depressed. The flux is rapidly varying
‘ with azimuthal angle for the direction coming from the edge of the
; control rod. Because of this type of ill behavior, composite angular
,:; quadratu;e may outperform global quadrature in those kinds of problems
e |
& I11-2
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N where transport methods are most needed. Some global quadrature sets are
“..
( ' more successful in handling this difficulty than others. Some of these
:j quadrature sets will be covered next.
N
~$
W Strong Flux
Toward 'A’

N
N Homogeneous
T Fuel-Moderator

Region Point ‘A’

5 Weak Flux
s A /, N\ Toward 'A'

/L ////////l

) Control Rod

Fig. III-1: Example Problem: Homogeneous Reactor with Control Rod

:i D. Totally Symmetric Quadrature Sets (SN) and Related Types

I Lathrop and Carlson developed a family of quadrature sets which
'j meet various syhmetry constraints and use the remaining degrees of
:; freedom to match angular moments. [Ref. 9 is perhaps the most useful of
: many available references on the subject.)] The most popular of these is
ii the totally symmetric quadrature sets. These are the sets implied if the
; - term "SN" is used without qua}ification as to quadrature set. They
; provide symmetry under interchange of any pair of axes,lunder 90-degree
:g, rotation about any of the three (x, y, and 2z) axes, and under reflection
?i through any cardinal (xy, vz, zx) plané. These constraints ensure that
A

the results computed for a problem will not depend on the choice of

% assignment of axis labels, clearly a physically degirable property.
; I11-3
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However, these symmetries are of more importance in three dimensional

transport than in the two dimensional cases of concern here. The
interchangeability of the x and z axes, for example, is a waste of
degrees of freedom that could better have been used matching moments,
for example. Lathrop }Ref. 8] has shown that the totally symmetric
quadratures are very prone to ray effect, and has proposed a
rotationally symmetric quadrature which reduces ray effect. This set is

discussed below, along with other product gquadratures.

E. Product guadrature Sets

Product quadrature sets are formed as the product of independent

”n

guadrature sets in t and ¢, such that @ K1 = (Tk,¢1) with weight
[ 4

wk,l = wtk w¢l and witﬁ k ranging from 1 to K and 1 from 1 to L.*
Product guadratures of this type are particularly appropriate for use in
two dimensional (xy) geometry, since they relax the x,z and y,z
interchange symmetries, but (usually) retain the x,y interchange
symmetry, as discussed above. The example in figure I11~-1 showed that
the flux can be ill-behaved in azimuth. However, variations in éolar
angle (for any fixed azimuthal direction) result only in smooth
variations in flux due to the z-symmetry of these problems. In a sense
then, the polar quadrature is an easier problem than the azimuthal
quadrature. Product quadrature sets allow the apportionment of more

computational effort to the latter and less to the former. Some specific

product quadratures are described below.

* The set is usually only specified for the principal octant, where all
three direction cosines are positive. The other octants are defined by
reflections of the principle octant. Since only the T >0 hemisphere is
used in xy-geometry, the total number of directions in the product
quadrature set is 4KL.

I1I1-4




1. Single Range Quadrature

§ Single range gquadrature assumes continuity and
; differentiability of the flux throughout the (t1,¢) plane and implicitly
represents the flux as a single polynomial in T, sin(¢), and cos($) over
a the entire domain. Lathrop and Carlson developed product quadrature sets

using Gauss-Legendre quadrature for T in the range (-1,1) and Gauss-

N

E Chebyshev quadrature in azimuth (Ref. 9]. They reported improved
’S calculation of critical radii in cylindrical coordinates, compared to
- conventional SN.However, this scheme is closely related to a PN type
% flux representation, and shares its inability to exactly represent
" vacuum boundary conditions. Yvonne's method, DPN, uses a double range
X Gaussian quadrature (in one dimensional problems) to correct this
:; deficiency. In two dimensional discrete ordinates, the analogue to this
X approach is the use of multiple range quadrature sets.

i 2. Multiple Range (SKG,LQ) Quadrature

: Recently, Abu-Shumays has developed a Gauss-Christoffel
?' quadrature in sin(f) over the range (0,1) {i.e. 0 in (0,7/2)} [Ref. 2].
: This is a double-range polar quadrature which takes advantage of the xy-
i < plane mirror symmetry of the problems consi&ered here. He also developed
"

2 three forms of quadruple-range azimuthal quadrature, one of which
:f retains xy-interchange symmetry. This azimuthal quadrature is defined
)

5 for ¢vin the range (0, ™ /2) and extended to the other guadrants by
2 reflection though the xz- and/or yz-plane. It can exactly represent
a vacuum and material interface boundaries oriented parallel to these
a planes. The combined Gauss-Christoffel polar / symmetric quadruple-range
;; azimuthal gquadrature has demonstrated excellent performance in reducing
&; ray effect.

:
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Based on Abu-Shumays findings, discrete ordinates results obtained
with the combined Gauss-Christoffel / symmetric quadruple-range
quadrature are here assumed to be the best of the available Gaussian-
type SN results and are used for comparison with the LN results., The
- notation used to designate this gquadrature is SKG,LQ indicating K

latitude lines with Gauss-Christoffel spacing and weights, each with L

azimuthal points per quadrant with quadruple-range spacing and weights.

3. Rotationally Symmetric Azimuthal (SKG LR) Quadrature
’

Lathrop [Ref. 8] suggested the possibility of using product

quadrature with equally weighted directions equally spaced in azimuth.

M R oY R W W =

Such a quadrature set is invariant under rotations about the z-axis by
angles which are multiples of the azimuthal spacing. For any choice of

L, this provides the maximum rotational symmetry. This quadrature

PP Wy Sy Ay A

reduced ray effect compared to conventional sets. Not only does it
better model the rotational symmetry of the integro-differential

transport equation, as Lathrop observed, but it also has the advantages

LAy’ T PN

of a local basis representation for ill-behaved fluxes. This latter

point is a consequence of the fact that the rotational quadrature set is

Ly e, 8 A

equivalent to a composite quadrature using the midpoint rule.SN with

rotational quadrature is thus a degenerate case of the discrete elements
method where the element angular quadrature is performed by the midpoint

rule. The notation used to designate discrete ordinates with this

A A AN A

quadrature is § indicating K latitude lines with Gauss-Christoffel

KG,LR’
. spacing ané weights, each with L azimuthal points per quadrant, equally

spaced and weighted.

I11I-6
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o Lathrop abandoned the rotational quadrature sets with the
o

. observations that they reduce but do not eliminate ray effect and that

they require mer directions for the same number of latitudes than the

standard sets: "256 vs 144 for N = 16" [Ref. 8:258). This implicit

assumption of the need for a square mesh is not really necessary,

however. It may be that only a few latitudes, with’Gauss-Christoffel

quadrature, will provide accurate polar quadrature, allowing the use of

a relatively fine azimuthal mesh. From the data presented in reference

:: 8, it appears that an SZG,SR solution (16 directions/octant) has less

Eé ray effect than an 516 solution (36 directions/octant) at 44% of the

::: cost. An S3G,8R would improve the accuracy of polar quadrature, with

!! similar ray effect and still have only 67% of the cost. For this reason,

SN results using the combined Gauss-Christoffel / rotationally symmetric
quadrature are used for comparison with LN results obtained with the

analogous quadrature.

F. Discrete Elements Composite Quadratures

The discrete elements method uses composite quadratures in which
the choice of a quadrature set entails the specification of the
arrangement and weights of the elements, subject to the constraint that
the set of elements tile the (1,4/) plane. Both one-dimensional (slab)
and two dimensional (xy) test cases are used in evaluations of the

discrete elements method. The quadrature sets used are described below.

1. One-dimensional Equal Weight (LN) Quadrature
In one space dimension (slab geometry), the angular
coordinates are oriented so that the problem is symmetric in azimuth.

Therefore, only polar quadrature need be considered. The simplest scheme

A ST
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is to divide the range of Tt (-1,+1) into N equal intervals, as is
usually done in composiée numerical iniegration. The error bound for the
quadrature over each element is proportional to the width of the
interval (i.e. the element weight) raised to a power determined by the
element quadrature rule. For example, with Simpson's rule the error is
proportional to ws. Hence, using equal weights tends to minimize the sum

of the errors over the set of elements. Another advantage is discussed

in reference to diffusion limit considerations, below.

2. One-dimensional Gaussian Weight (LNGW) Quadrature
A feature of the Gauss—Legendre:quadrature for one-~-dimensional

SN is that it. biases the placement of directions towards the poles,

i.e., forward and backward through the problem, and puts reduced
emphasis upon the equatorial (sideways) directions. A composite
quadrature set which uses elements unequal in size, such that the
element weights are those of the Gauss-Legendre ordinates, would retain

this feature. It may be conjectured that good resolution in the polar

.

fluxes is more important than for the equatorial fluxes, so that a

"Gauss-like" composite quadrature might prove more effective than an

equal weight composite quadrature. Gaussian weight composite quadrature

is used to test this conjecture.

3. Equal Weight Cdmposite Product (LK,L) Quadrature
. For two-dimensional (xy)'problems, the discrete elements
method, as derived in section III-C, uses composite product quadrature.
Although any collection of rectangular elements which ti;es the (T,9)
coordinate plane couid be employed, a Aivision into discrete eléments of
equal area is most naturai. The advantages of this quadrature are that

uniform weights minimize the sum of the error terms and that the set

III-8
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most nearly meets the diffusion limit criteria, as explained below. This

quadrature set also retains the advantage of rotational symmetry in
modeling the rotational symmetry of the Boltzmann transport equation and

could be used for three-dimensional problems.

G. Hybrid Gauss-Christoffel/Composite (LKG,L) Quadrature

In two-dimehsional problems, as observed above, the flux is well-
behaved with respect to 1, but may be ill-behaved with respect to ¢.
Consequently, a hybrid quadra;ure scheme is proposed. This scheme uses
Gauss-Christoffel quadrature in the polar variation and equal weight
discrete elements for the azimuthal quadrature. The fixed latitudes of
the polar quadrature take advantage of the well-behaved character of the
flux to provide the accuracy of a high order global quadrature, while
the equal weight composite quadrature accommodates the potential ill-
behavior of the flux. This method provides the advantage of coupled
angular and spatial quadrature to steer the flux, but only in azimuth.
However, steering in azimuth should suffice to reduce ray effect. Since
fewer auxiliary fluxes are required, none being needed for polar
steering, the method would be more cost effective than the LK

'L

quadrature, if it were at least as accurate.

H. Diffusion Limit Considerations

Although numerical transport methods are needed for accurate flux
determinations where diffusion theory does not apply, it is desirable
that the numerical method produce the same result as diffusion theory
for problems where diffusion theory is valid. A numerical method which

does this is said to satisfy the diffusion limit.

III-9
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A discrete ordinates guadrature set which meets the criteria
enumerated below will satisfy the diffusion limit. This can be shown by
assuming that the flux is of the form ¢ @) = ¢ + {+ J . Then, in the
limit of small J, discrete quadrature with a quadrature set meeting
these constraints can be used in place of analytic quadrature in the

derivation of Fick's law or of the diffusion equation. The criteria are:

Z Wwo=1 (I111-2)
m
Z”m Wo=0 (II1I-3)
m

an Wo=0 (I1I-4)

m
Yuyn W =0 (I111-5)
m
Y u 2w =173 (I111-6)
o m m

1/3 (I11-7)

™
=
3
nN
52
L]

The physics behind these constraints is of interest. Equation (III-2)
assures conservation in that the calculation of ¢(hence of Q) will not
lose or invent particles. Equations (III-3) and (III-4) serve the same
purpose with respect to current. If the directional flux is isotropic,
for example, they ensure that the current components, Jx and J_,
respectively, are properly computed as zero. Equation (III-5) causes
cross product terms to vanish from the diffusion equation; the last two
constraints produce the factor of 1/3 in the diffusion coefficient.

In the limit of isotropic flux, the flux-weighted element streaming

directions go to the element center directions and the discrete elements

II1I-10




method becomes equivalent to a discrete ordinates method with those

directions and weights as its quadrature set. The L becomes, in this

KG,L

degenerate case, S for example. It is desirable for the discrete

KG,LR’
element quadrature sets to meet the diffusion limit.

All tt}e (xy-geometry) quadrature sets described in this chapter,
and used in this report, are constructed by specifying the set on the
primary octant and filling in the other octants by reflection.
Therefore, they have mirror symmetry through the yz-plane, which ensures
equation (III-4) is satisfied, and through the xz-plane, for equation
(I11-3). Either of these two symmetries, alone, is sufficient to satisfy
the cross-product constraint, equation (III-5). The conservation
constraint is met by proper normalization of the weights. All of the
sets used here are symmetric about ¢ = 7/4 and so are invariant under
interchange of the x and y axes. Thus, if either of equations (III-6)
and (III-7) are met, then so is the other. The standard SN quadrature
sets, and the SKG,LQ sets (for K>1) satisfy enough moment conditions to i
ensure satisfying equations (III-6) and (III-7). These quadratures
satisfy the diffusion limit exactly.

An advantage of the Gauss-Christoffel polar quadrature (upon which
Abu-Shumays did not remark, in Ref. 2) is that it satisfies the
diffusion limit exactly, for K>1, when used with any azimuthal

quadrature with the symmetries described in the previous paragraph. This

is because, in equation (I1I-6), um2 = cosz(¢) sinz(e) and the

symmetry about ™ /4 allows the quadrature points to be arranged in pairs
with complementary azimuths. Then the identity sinz_(d)) + cosz(vb) =1 !
causes the choices of azimuths and weights to drop out of equation (III- \

6). As a result, the Gauss-Christoffel polar / rotationally symmetric

I11-11
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azimuthal quadrature, sKG LR and the corresponding discrete elements
r

quadrature, both satisfy the diffusion limit exactly.

LKG,L

The LK L quadrature (considered as a fixed quadrature set) does not
14

meet the diffusion limit exactly. For the reasons given in the last

paragraph, the summation in equation (III-6) is independent of the

azimuthal points and depends only on the choice of K. It reduces to

. 2 _ 2
(1/K) ) sin®(0) = (/K Y (-1, %) (111-8)
k K
where
Ty = (2k-1) / (2K) (I11-9)
which can be solved to obtain
Z"mz W= % [1 + 1/(8K%)] (III-10)

m

In practice, equation (III-6) need not be met exactly, but the method
will perform poorly under some circumstances if the summation differs
from 1/3 significantly. In this case, the method converges rapidly to
1/3; for K as small as 2, the error is only about 3%, even if the
quadrature set is used with discrete ordinates. The composite quadrature
of the discrete elements method further reduces this error.
Consequently, for practical purposes, the diffusion limit is met.
Similar arguments can be made for the one-dimensional quadrature, LN'
for which the summation is given by % (1 - 1/N2) Also, it can be
shown that these equal weight schemes are closest to meeting the
diffusion limit, in that, if the weight of one element is increased and
that of another correspondingly decreased, the approximation to 1/3 is

less accurate.

I1I-12
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I. Summary

For xy-geometry, there are two natural choices of quadrature for
the discrete elements method. With steering of the streaming angles in
both polar and azimuthal coérdinates, the equal weight product
quadrature, LK,L is used. With steering only in azimuth, the hybrid

Gauss-Christoffel polar / equal weight (rotationally symmetric)

azimuthal product quadrature, is used.

LKG,L

The performance of discrete ordinates is strongly dependent upon
the choice of quadrature set, and the optimum choice is problem
dependent. A meaningful performance comparison between discrete elements

and discrete ordinates requires comparison with several discrete
elements quadratures:

1 - Conventional (Totally Symmetric) SN

This is often a sub-optimal performer, but the production

codes in current use are designed around this quadrature set, so that it
is used by default. Product quadratures are awkward to use and
inefficiently implemented. DOT-4.3 is an example [Ref. 12]. In a
practicai sense, SN is thé standard of performance.

2 ~ Gauss-Christoffel / Rotationally Symmetric S

KG,LR

This quadrature underlies the hybrid LKG L scheme.
4

Comparison of these two will determine, if the discrete elements method
works well, whether it works because of its underlying quadrature set or
because of its composite gquadrature within each element.

3 - Equal Weight / Rotationally Symmetric SKE,LR

This quadrature underlies the LK L scheme and comparison
14

would have the same benefits as in the previous paragraph. However,

5 i i i i same
KE,LR 18 never as accurate as SKG,LR while showing essentially the

ITI-13




ray effects. These two sN methods have egual computational cost.

Therefore i i i .
refore, comparison of LK,L with SKG,LR is reported here

4 - Gauss-Christoffel / Quadruple Range SKG,LQ
This is a special quadrature set, ideally adapted to the
test problems used here. Comparison with this quadrature is a demanding
test of the discrete elements method. It should be noted, however, that
such ideal discrete ordinates quadratures are not available for many
practical problems. For example, the presence of diagonally oriented
absorbers, material interfaces, or vacuum ducts would invalidate the
assumptions of the quadruple-range azimuthal quadrature but would not be
expected to degrade the performance of discrete elements.
All the quadrature schemes considered here meet, or very nearly

meet, the diffusion limit constraints, equations (III-2) through

(IT1-7).
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IV. Quadrature Rules for Discrete Element Flux Modelling

The previous chapter noted that there are many possible choices of
quadrature sets for discrete ordinates. The corresponding freedom in the
discrete elements method is in the choice of quadrature rule within each
element. This quadrature rule determines several characteristics of the
flux model: whether it is piecewise continuous or discontinuous, the
order of polynomial used as the basis function within each element, and
the possible range of variation of the flux-weighted streaming
direction. Three quadrature rules were tested: Simpson's rule, three-
point Gauss-Legendre rule, and the Newton-Cotes (five-point) rule. This
chapter reviews the rules and their Taylor series error bounds and
considers their relative advantages and disadvantages. Table IV-1
provides the formulas for flux-weighted mean angle, optimized for
minimum computational operations. The parameter "s" in these formulas
represents T or ¢. The mean azimuth formulas are for use with L and

K,L

LKG,L’ Corresponding mean T formulas are used with LK,L and LN'

A. Simpson's Rule

Simpson's (three-point) rule is the lowest-order scheme considered.
A convenient form for use here is
a+h
i) f(x) dx = h [f(a-h) + 4 f(a) + f(a+h)] / 3 (Iv-1)
a-h

An error bound (Taylor series residual, R) for this approximation is

(4)

R = - 0.000347 (8x)° £ (x") (IV-2)

where Ax = 2h and x' is some point in (a-h,a+h).

Iv-1

,‘. ‘... -‘...'.

~




&

[ (.'.l'.l,

N
-

'.:S With Simpson's rule, the directional flux is modelled by a
(" . continuous piecewise-quadratic polynomial. Continuity is accomplished
::.: not by overlapping finite elements, but implicitly, through the use of
E the same auxiliary flux at the boundary of adjacent discrete elements.
‘ \ If the actual flux is discontinuous, or nearly so, then the model will
ES be poor only in the element(s) in which the discontinuity(s) occur.
;: Discontinuities at the boundaries between (directional) octants are
. included in this model, since the auxiliary fluxes along octant
S boundaries are independently computed for each octant as part of the
_ spatial mesh walk. Consequently, vacuum boundaries parallel to principal
.. planes can be modelled exactly by the discrete elements method,
-

,; regardless of the choice of quadrature rule.

:':. Advantages of Simpson's rule include:

,./ - Mean streaming direction can vary over full range of the
j element. This could be valuable in problems with streaming ducts through
-{ shields since particles could be modelled as streaming directly down the
,_ duct, regardless of its orientation.

A
::; - Some auxiliary directions are on boundary between elements.
N

:: These can be used twice, if sufficient storage is available, reducing
_. computational cost of auxiliary fluxes.

T

E::- B. Three-Point Gauss-Legendre Rule

The Gauss-Legendre (three-point) rule is of higher order than
:z Simpson's rule, but has the same computational cost (assuming auxiliary )
)

':E fluxes are not reused due to storage constraints). It is the only method
.:_ used here which models the flux as diséontinuous piecewise polynomial. A
-‘_'v
"

» 1v-2




convenient form for use here is

S a+h
4 f £(x) dx = h [5 £(a=bh) + 8 f(a) + 5 £(a+bh)]) / 9 (IV-3)
- a=h
AR
" - . 1/2
e where the auxiliary flux offset factor is b = (3/5)
S
An error bound (Taylor series residual, R) for this approximation
xh ,
o is
N -
24 R = - 4.96x10"  (4x)' £® (x1) (IV-4)
S8 where Ax = 2h and x' is some point in (a-h,a+h).
N
'i - Advantages of the three-point Gauss-Legendre quadrature are:

g | O Ly

- Higher order on individual discrete elements with only

.".

RN

slightly higher cost (no more cost than Simpson's rule if boundary

EN AKX
b

/. f?)_ 4

auxiliary fluxes aren't reused due to memory constraints)

A

- Broad range of variation of mean angle, compared to two-

"

"

?§$ point Gauss-Legendre, but mean angle cannot reach the edge of the
:;i element. This could interact well with spatial quadrature schemes since
“lﬂ they are inaccurate for very small uor n.

b ~

f;: - The underlying model is equivalent to a piecewise-
)

‘:;: discontinuous, piecewise-quartic (fourth-order) polynomial fit to the
;T. directional flux. In this model, if any discontinuities occur at (or
:&; very near) to the boundary between elements, they may be modelled
:i; .accurately, which is a potential advantage. This provides a simple way
Lii to optimize the method for problems where such discontinuities are
Ef; anticipated to occur along a limited number of known directions.
k;iz (Examples: hexagonaily shaped or diagonally oriented absorbers, sources,
o

ARG or material interfaces in an otherwise rectangular system.)

o
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C. Newton-Cotes Closed (Five-Point) Rule

The Newton-Cotes (five-point) rule is of the same order as the
Gauss-Legendre (three-point) rule, and the coefficients of the error
bounds are approximately equal. Newton-Cotes rule provides equivalent
accuracy, but at greater computational cost due to the increased number
of auxiliary fluxes needed. It is tested for use in the discrete
elements method because it provides continuity at the boundaries.between
elements, unlike the Gauss-Legendre rule. A convenient form for use here
is

a+h

S f£(x) dx = h [7 £(a-h) + 32 f(a-h/2) + 12 f(a)
a-<h )
+ 32 f(a+h/2) + 7 f(a+h)] / 45 (IV-5)

An error bound (Taylor series residual, R) for this approximation is

R =-5.17x10 " dx) £ (x") (IV-6)

where Ax = 2h and x' is some point in (a-h,a+h).
The advantages are:

- Computational cost of using five auxiliary directions is
offset by the fact that two of them are on the elemeht boundaries and
can be reused, as with the Simpson's rule.

< Mean streaming direction can vary over the full range of the
discrete element, as with Simpson's rule, which could be beneficial in
duct streaming problems, for example

- The underlying model is a continuous piecewise-quartic fit
to the directional flux. The comments about the Simpson's rule model

apply here, as well,

Iv-4
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Simpson's Rule:

f(so+h) - f(so-h)
<> = s0 + h (Iv-7)
f(so+h) + 4 f(so) + f(so-h)

where h = As/2

& Gauss-Legendre Three-Point Rule:

- £(sy*ta) - f(so-g)
~ <s> = Sy * 9 (Iv-8)
f(so+g) + 1.6 f(so) + f(so-g)

e where h

As/2

(3/5)/2

Q
"

Newton-Cotes Five-Point Rule:

f(so+h) - f(so-h) + 1 [f(s0+h/2) - f(so-h/Z)]

[£(sy+h/2) + f(sy-h/2)] + ¢

- <s> =s_+ h
- f(so+h) + f(so-h) +c

2 3 f(so)

(Iv-9)

where h = As/2
c, = 16/7
. c, = 32/7

c, = 12/7

- ..
s 8 4 ¢t
P
ofal
w

NS

Table IV-1: Flux-Weighted Mean Angle Formulas
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D. Summarx

The discrete element quadrature rule is used in computing the flux-
weighted mean streaming direction for the element. Its only effect on
the method is through this steering of particle streaming. Three
quadrature rules were selected for evaluation. Simpson's rule is low
order but computationally inexpensive and allows the streaming direction
to be steeréd anywhere within the element of angle. With the same
expense (three auxiliary flux calculations per element), Gauss-Legendre
provides higher order and the possible advantages of a piecewise
discontinuous, piecewise polynomial flux representation. Gauss-Legendre
restricts’ the steering of the streaming angle to the center %7% of the
element range (in one angular dimension), which may limit its ability to
model a streaming ddct, for example, but also avoids space quadrature in
directions nearly parallel to the sides of the space cell, for which
most space quadrature schemes have very poor accuracy. The Newton-Cotes
rule uses five auxiliary fluxes per element and so is more expensive to
compute. It uses.a continuous, piecewise polynomial flux representation
and allows the streaming direction.to be steered anywhere in the
element.

The above discussions of error bounds and accuracy all implicitly
assume that the auxiliary  fluxes (f(so), etc.) are exact. However, they
are calculated bi numerical means, discrete ordinates spatial
quadrature. The errors in the data for the quadrature rules, as it were,
may well dominate their performance. The results of nﬁmerical
experimentation are reported in later chapters. The spatial quadrature

methods employed here are discussed in the next chapter.
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V. Spatial Quadrature Methods

The research reported in this dissertation is primarily concerned
with two-dimensional Cartesian (xy) geometry, although the special case
of one-dimensional Cartesian (slab) geometry is also considerxed. The
discrete element method uses the same spatial integration methods as the
discrete ordinates method; therefore, these spatial methods are reviewed

in this chapter.

A. One-Dimensional (Slab) Spatial Quadrature

Four methods of one~-dimensional spatial quadrature were evaluated
in this study: step, diamond difference (with negati;e flux fixup), step
characteristic, and linear characteristic. Several recent papers have
concerned these methods. Alcouffe, et al. [Ref. 3], proposed the linear
characteristic (L.C.) method and reported excellent performance, in
comparison with other methods, based on numerical testing. Larsen and
Miller [Ref. 6] evaluated the convergence (vs. space cell size) of these
methods, as did Lee and Vaidyanathan [Ref. 11]. The concépts behind the
methods, their formulas, and some of their advantages and disadvantages
are summarized below.

1. Coordinates and Symbols

In the one-dimensional coordinate system, x is the space
coordinate; the angular coordinates are rotated (compared to xy

geometry) such that 0 is the angle with respect to x, and i is the x
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direction cosine (u = cos(0)). For convenience in computer
implementation, let Fin be the directional flux entering the space unit
cell of widthA x and Fout be that leaving. This convention allows the
use of the absolute value of U and requires that the program explicitly
keep track of whether Fin represents F

and Fo represents F

left ut right

(for positive u, i.e., for right-bound particles) or vice versa (for
negative u, i.e., for left-bound particles). Using this scheme, the
spatial quadrature method need only consider positive directions.
Negative directions are handled.as the‘reflection of positive ones. With

this notation, the transport equation to be solved is:

HdF/dx +OF =0Q (v-1)
where:
o=¢ total v-2)
¢c=¢ scatter /0 total (v=3)
Q=c¢cd® + S/o (v-4)

The effective source parameter, Q, has dimensions of a directional flux,
and is physicaliy significant as the value the flux asymptoticdlly
approaches as u-+ 0. Defining Q in this way is computationally
convenient and efficient, as well as physically meaningful, and is
consistent with the usage in chapter II.

2. Balance Equation

The balance equation is a conservation relation among the
cell-edge and cell-average fluxes obtained by integrating equation (V-1)

across a space cell:
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u(Fout-Fin) /A x + °Fc = g Qc (v-5)

where Fc is the cell average flux and ¢ Qc is the cell average effective
source. (The subscript on Q will be omitted, except where necessary to
avoid ambiguity.) The cell optical thickness, € , is the parameter

defined as
e = oAx /u (V-6)
Using this parameter, the balance equation becomes
- + = -
(F Fin) /€ Fc Q (v-7)

out

3. Conservation Considerations

Conservation of particles is assured if two conditions are
met. First, the spatial quadrature scheme must be based upon the (exact)
balance equation, regardless of any approximate auxiliary relations it
assumes. This condition ensures conservation of particles inside each
spatial m;sh cell. All the spatial quadratures used here meet this
condition. Secondly, particles must be conserved in crossing the
interfaces between cells. In the discrete ordinates method, this is
achieved by using the flux out of one cell as the flux into the next
cell. More precisely, it is the component of current in the direction
normal to the face of the cell which must be carried unchanged across
the cell boundaries. In one dimension, this current is Jx =u Fm. In
the discrete ordinates method, the directions, Mo are fixed so that

continuity of flux across the cell interfaces is sufficient.
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In the discrete elements method, this same logic applies to the

auxiliary fluxes, whose directions are fixed. However, the main fluxes
in the discrete element method use steered streaming directions which
are not fixed (which is the major objective of discrete elements).
Conservation is accomplished in the same two steps. Within each space
cell, the streaming angle for each element is assumed to be constant. It
may have a different value after each iteration, but while the spatial
quadrature is performed, the flux-weighted streaming directions are
treated as fixed. This assures conservation within each space cell,
since the explicitly conservative spatial quadrature methods are used,
as in SN. Conservation across cell interfaces is achieved by explicitly
using the normal current out of one cell as the normal current into'the
next cell. Since the streaming directions are discontinuous across cell
interfaces, so are the fluxes, but in just such fashion as to maintain
continuity of the current. Consequently, there are two physically
meaningful results computed by the method, the cell-average fluxes and
the cell-boundary currents.
4. Step Method

The step method assumes that the flux is constant across each

space cell, with discontinuities at.the inbound edges. This is

equivalent to assuming the auxiliary relation:
F =F (v-8)
This leads to a solution of the balance equation:

F.=F =Q¢€/ (l+e) + F _/(1+e) (v-9)
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This solution has several computational advantages. The
coefficients of Q and Fin are in the range (0,1) for all possible
optical thicknesses. Therefore, the numerical method which uses these
coefficients is stable and absolutely convefgent. The method is
positive, in that, for any positive inputs (Q and Fin)' the computed
fluxes are positive; hence, no negative flux "fixup" is required.
Positive methods also have the benefit of producing solutions which vary
smoothly from cell to cell across the space mesh. Finally, there are no
special cases, so that no if-tests are required. This combines with the
.computational simplicity of equation (V-9) to make the method extremely
fast.

The disadvantage of this method is its poor accuracy, which
requires a prohibitively fine space mesh to provide usable results for
most purposes. Since the method is smooth and positive, it may be
adequate for computing the auxiliary fluxes used in steering the
streaming directions. For that application, only relative levels are
important, as is seen from the form of equations (II-20) and (II-21).

5. Diamond Difference

The diamond difference method assumes that the flux varies
linearly across the space cell. Thus, the cell-average flux is
approximated by fhe average of the cell-edge fluxes. This is equivalent
to the familiar "diamond difference" approximation for numerical

differentiation and gives the auxiliary relation:

Fc = (Fout + Fin) / 2 (v-10)
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This combines with the balance equation to give a solution:

Fout =0 2¢e/(2 +¢) 4 Fin (2 -e)/(2 +¢€) (V-11)
Fc is then computed directly from the auxiliary equation.

This method has several advantages. It is numerically stable and
absolutely convergent; the coefficients of Fin and Q in the explicit
solution for Fc lie in the range (-1,+1), since the optical thickness is
positive. As in the step method, the calculations are simple and no if-
tests are required. This method is substantially more accurate than the
step method, and is easily generalized to curvilinear geometries, as
with cylindrical or spherical coordinates.

The diamond difference method, however, is not a positive method.
It may predict negative fluxes, which are not physically reasonable.
Relatively fine space meshes are needed to avoid negative fluxes. The
calculation of space-integral quantities,.such as total absorption
rates, is insensitive to the presence of a few negative fluxes; but the
pointwise values, such as scalar flux as a function of position, tend to
be oscillatory and inaccurate. These inaccuracies impair its usefulness
for computing the auxiliary fluxes, but it>may be adequate for the main
fluxes of the discrete elements method.

6. Negative Flux Fixup for the Diamond Difference Method

In order to avoid the (conceptually disconcerting) negative
fluxes, a fixup scheme is often employed. This is done by computing Fout

using the normal diamond difference equations, as shown above. If the

result is negative, however, it is (arbitrarily) set to zero. This new

aukiliary relation (Fout = 0) is substituted into the balance equation,




e which is then solved for F: .
? F,=Q+F, /€ (v-12)

The advantage of this scheme is that the pointwise fluxes are more

reasonable, while the space-integral values are nearly as accurate as
before, assuming the fixup is invoked only infrequently.

The disadvantage of the fixup is that the numerical method becomes
ﬁonlinear and.convergence is no longer assured. An oscillatory
instability can result wherein the fixup is required on one iteration,
but the fixed-up flux avoids the need for the fixup on the next
iteration, yet that un-fixed-up flux requires the fixup on the
subsequent iteration, etc. This can happen if the fixup is required too
frequently, which is sometimes the case for realistic problems.

7. Considerations Regarding the Use of Fixups

There are two schools of thought regarding the use of negative
flux fixups. One viewpoint is that the fixup degrades integral values
and should not be used. Negative fluxes are seen as being merely
inaccurate numerical representations of the (correct) positive values.
'Further, the presence of too many negative fluxes is considered an
indication of a need to refine the space mesh. The other viewpoint is
that negative flux fixups should be used since pointwise values are
improved, so long as integral values are not significantly altered by
the fixup. Changes in integral values are seen as an indication of the
need to refine the space mesh. Since amelioration of ray effects is an
objective of this research, pointwise values are of importance, and the

latter point of view is taken here.
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8. Step Characteristic Method

The step characteristic method is derived by assuming
streaming along the "characteristic lines" of the transport differential
equation, 1i.e., in direction . The transport equation (V-1) is
integrated analytically, with the assumption that Q(x) is a constant,

Qc' across the space cell., This provides an auxiliary equation for Fout:

-€
Fue=¢ Fio v I-e)o (v-13)

The resulting value is then used in the balance equation to obtain

F_=Q+ (F, =-F ) /¢ (V-14)

An advantage of this method is its positivity, which avoids the
need for negative flux fixups. The method also avoids the point-to-point
oscillations of the diamond difference method. With both smoothness and
accuracy, the method should be applicable to both the auxiliary and main
fluxes of the discrete elements method.

The disadvantage of the method is the computational cost of
evaluating the exponential function. This cost can be minimized if the
coefficients are computed only once and sto;;d in arrays, assuming
sufficient storage is available for this use,:- or are computed only upon
changing material regions, being passed to the step characteristic
subroutine as a parameter. *

It is interesting that (1n this one-dimensional case, only) the
diamond difference method is equivalent to the step characteristic

method with the exponential approximated by (2-€)/(2+4+€). The leading

. . , . . 3
error term in this approximation is e /12.
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9. Linear Characteristic Method

The linear characteristic method is derived as was the step
characteristic method but with the improved approximation that the
effective source, Q(x), is assumed to vary linearly across the space
cell. In order to estimate this variation, it is necessary to
accumulate, in the outer iteration, not only the cell average effective
source, Qc’ but also the edge values for each cell, Qin and Qout' (Note

that Q of one cell and Q, of the next cell are different if the
out in

cross-sections are different.) Then Q(x) can be approximated by

Q(x)

Q. t+ P (x-xc) /8x (V-15)

where

P=2gQ e Qin (v-16)
However, if |P| > 2 Qc . then Q(x) will be negative at one end of the
cell. Therefore, a negative source fixup is used, which reduces the
slope of Q(x) so that it just reaches zero at the edge of the cell. This

is done by recomputing P (if |P| > 2 Qc) as

=20 SIGN(Qout-Qin) (v-17)

The transport equation is integrated analytically to obtain Fout in

terms of Fin' Q, P, and the optical thickness, €:

-€ -€ -€
Fout = Fin e +Q(l-e ) +P[1-(1/2+1/€)(1 -e )] (v-18)

This result is used in the balance equation to obtain Fc:

=Q+ (Fi, - Fout! /€ (V-19)
v-9
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Alcouffe, et al., have reporped that the advantage to this method
is that it is very much more accurate than the other methods considered.
Although it requires more storage and computation per cell, it provides
equivalent accuracy with a much coarser mesh, so that storage and
execution costs are both reduced for a given accuracy of results
[(Ref. 3]. The disadvantage of somewhat more complicated programming is a
minor one. This method is appropriate to both the auxiliary and main

fluxes of the discrete element method.

B. Two-Dimensional (xy) Spatial Quadrature

Three methods of xy spatial quadrature are considered: step,
diamond difference (with negative flux fixup), and step characteristic.
Fine mesh spacing is used with these methods to obtain adequate
accuracy, rather than the higher order methods which have been presented
very recently. Conservation is achieved by the same means as in one
dimension, as described above.

1. Coordinates and Symbols

The two-dimensional space and angular coordinate systems used
to define the angular quadratures are used here for the spatial
quadratures. The unit space cgll is shown in figure V-1l. As in the one-
dimensional case, the direction cosines are all assumed positive and the
other three octants are obtained by reflections. Due to the z-symmetry,
only the upper hemisphere of directions (1> 0) need be considered. The

fluxes entering the cell are Fin < and Fi and are the fluxes on the

v n,y

left (x=xi_1 2) and bottom (y=yi ) faces, respectively. Similarly,

/ -1/2

F and F are the fluxes on the right and top faces of the cell.
out,x out,y

These fluxes are directional fluxes in a fixed quadrature direction, Q.

v-10
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2. Balance Egquation

Using the above notation, the transport eéquation becomes

udrF/dx + ndfF/dy + OF = 00 (V=-20)

where Q is defined by equation (V-4), as before. Integrating over the

area of the space cell yields the balance equation:

- - + = -
(Fout,x Fin,x) /e ¥ (Fout,y Fin,y) /8 Fc Qc (v=21)
where the optical thicknesses are
a=0lAx/n (Vv=-22)
B=0cAy/n (v-23)

and the cell-edge fluxes are averages over their respective cell faces,
Fc is the cell-average flux, and Qc is the cell-average source term. The

subscript on Q will be dropped except where required to avoid ambiguity.

3. Steg Method
As in slab geometry, the step method in xy geometry assumes

auxiliary relations

= = v=-2
Fout,x Fout,y Fc ( 4

This assumption reduces the balance equation to a single unknown. The

v-11
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4
34)
3} balance equation is solved to obtain
( + , + P
oy Fc Q (1/a) F:Ln,x (1/8) in,y (V-25)
L
o 1 + (1/%) + (1/8)
o~
7,
I ‘,:‘
The step method has the same advantages and disadvantages in two
:::: dimensions as were described above for the one-dimensional case. Another
\-.
S
;..' advantage is that it can be readily extended to curvilinear coordinates.
4. Diamond Difference
.-.;j The diamond difference method assumes that the flux is linear
:_: in both x and y over a space cell, so that the cell-average flux is
. equal to the arithmetic average of the cell-edge fluxes on opposite
:-, sides of the cell. As before, the cell-edge fluxes represent averages
. .
SR
over their respective faces of the cell. This assumption leads to an
. auxiliary relation for each dimension:
oy
. = + -
o l:‘c (Fin,x Fout,x) /2 (v-26)
- + -
@ Fc (Fin,y Fout,y) / 2 | (v=-27)
)
-.:._‘- These relations, together with the balance equation form an algebraic
o system which is solved for F .
- out,x
o
o Q + F, (a -b-1/2) +F, 2b
.f -
.4 Fout,x in, x in,y (v-28)
a+b+1/2
- where, for computational efficiency, a =1/a and b =1/8.
1 The remaining fluxes, Fc and Fout,y' are then evaluated using the
:'_: auxiliary relations.
3
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The diamond difference method provides good accuracy for global,
i.e. space~-integrated, quantities, such as total absorption; but the
method is not positive and predicts negative fluxes if the space mesh is
too coarse. Lathrop has researched the issue of positivity versus
accuracy. He states that:

"A version of the variable weight scheme in which weights
depend not only on the space-angle mesh but also on particle
sources and fluxes is suggested as a means of obtaining the
highest accuracy consistent with a positive difference scheme,
but it is noted that such sthemes are computationally more
expensive than available -orrective recipes used in
conjunction with nonpositive schemes." [Ref. 7:475]

The only variable weight scheme used here is the step characteristic
method. It will be discussed after the corrective recipes, which are
considered next.

5. Negative Flux Fixup for the Diamond Difference Method

The design and application of negative flux fixup in two
dimensions is similar to that used in one dimension, with the added
complications that one or the other or both of the cell-exiting fluxes
can be negative, so several special cases must bg handled. The
algorithm, optimized for minimum if-tests and computer operations,
proceeds as follows:

1 - Compute F from equation (V-28)

out,x

2~ IfF is not negative, compute F from the diamond
out,x out,y

difference relations:

= F, + F - F, v-29
Fout,y in,x out, x in,y ( )

v-13
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S a~-IfF is not negative, compute F_ from either diamond
out,y c
) difference equation, which completes the calculations.
~e
N - i tive (but F was n n replace
g-‘-{ b If Fout,y is nega ( out,x s not), then rep
\'::_ the y diamond relation, equation (V-27), with the fixup Fout g -
el 4

i and solve the resulting system of equations for Fout <

1

-"‘

-l - + F,

o F = Q + F.in,x (a 1/2) in,y b (v=-30)
B i-\' Out,x

-~ a+1/2
~N

AN
"-:::- If the revised Fout . is not negative, compute Fc from the x diamond
,
relation, equation (V-26), which completes the calculations. If the
oo .

KA revised Fout < is negative, then both outgoing fluxes require fixups.
-".4 ’

'-::: This case is handled in step 4, below.

- 3 - If the (originally) calculated value of Fout x is negative,

L]

AN then the x diamond relation is replaced by the fixup F =0 and
RN out,x

‘J‘ . s

o, the resulting system is solved for F :

e out,y

D

)

- Q + F, a+ F, (b - 1/2)

Ty = n Ve~

= Fout,y in,x in,y (v-31)
.:_. b+ 1/2

e

R

- If Fout y is not negative, then compute Fc from the y diamond relation,
“ s ’

f:‘,'_: equation (V-27), which completes the calculations. Otherwise, both
j:::f: outgoing fluxes require fixups. This case is handled in step 4, next.
. 4 - Since both outgoing fluxes have been negative, despite
:t-::j application of a fixup of one of them, the final alternative is to
I“l

‘:: replace both diamond relations by fixup constraints: Fout < - 0 and
b ’
0 F = 0 and compute F_ directly from the balance equation:

'.._\ out,y (o]

=2

s F . -
DA c™Q ¢ F;m,x a + Fj.n,y b (v-32)
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6. Step Characteristic
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The step characteristic method for xy-geometry was developed

by Lathrop and compared to several other positive schemes [Ref. 7].

Figure V-1 illustrates a single space mesh unit cell, of dimensions Ax .

by Ay, not necessarily square. The streaming direction is assumed to

lie in the principal octant, so that particles enter the cell from the

left and bottom‘and exit on the right and top.
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Fig. V-1: Step Characteristic Unit Cell
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A Rather than assume the auxiliary relations directly, as in the
“_. previous methods, the step characteristic method uses analytic
:;:j integration, in the fixed single direction §, to find the flux
. :

f.-: tnroughout the cell. The assumptions are:

A 1 - the source term, Q, is constant throughout the cell

W)

- 2 - the flux entering on the left, Fin <’ is a constant (with
-_'{. ’

respect to y) along the left face of the cell

3 - the flux entering on the bottonm, Fin , 1s a constant

\. Y

:-‘ (with respect to x) along the bottom face of the cell.

E:: The solution for the flux is analytic throughout 1';he cell, except
:_. that it is discontinuous across the corner characteristic line,v which
::E: extends from the lower left corner in direction ¢ across the cell
:‘-'- (unless Fin,x = Fin,y)' The required outputs of the method are the cell
'-‘ average flux, Fc’ and the exiting fluxes, Fout,x and Fout,y' The exiting
'? fluxes are obtained by analytically averaging the solution for the flux
.:--' along the right and top faces. This provides a formula for the outbound
‘:j fluxes in terms of the inbound fluxes, the source (Q), and the optical
:E\: thicknesses of the cell (g and g). The cell average flux, Fc' could be
N found by analytically averaging the solution over the cell, but it is
.’,'.., computationally more efficient to find it directly from the balance
0

j'.:j-\ equation. The two approaches are algebraically equivalent, but not
—': necessarily numerically equivalent, due to rounding error. Using the
:“'{ balance equation ensures that the method is numerically, as well as
S
::: conceptually, conservative. The step characteristic method is a variable
.-:; weight method, in that there are different sets of formulas used |
.E: depending upon whether the corner characteristic line intersects the
53 right face, the top face, or the top right corner of the cell.
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If the corner characteristic line intersects the right face of the
cell, as shown in figure V-1, then ¢ <¢ diag = arctan(Ay/A x). An
equivalent condition is that a <8 . In this case, the right cell-edge

flux depends on both inbound fluxes, but the top flux does not depend on

the bottom flux. The formulas are

Foue,x = @+ (1-ab) e " (F; ~.-Q) + (1-e ) b (F; -0 (V-33)

-a
Fout,y = Q + (l-e ) a (Fin,x-Q) (V_34)
where a = 1/¢ and b = 1/8 . If the corner characteristic line

intersects the top right corner, i.e. if & =B , then the top flux
depends only on the left, and the right depends only on the bottom. The

formulas are

-8
out, x Q+ (l-e ) b (Fin,y-Q) (V-35)

-0
Fout,y = 2 * (1e) a (Fy  -0) (V-36)

The remaining case is that @ > B, so that the formulas are

Foug,x = @+ (1=e7) b (Fy - -0) (V-37)

- -8
Fout,y Q+ (1-e ) a (Fin,x-Q) + (1-Ba) e (Fin,y-Q) (V-38)

In each case, the cell average flux is given by

= + - - -
Q (Fin,x Fout,x) a+ (Fin,y Fout,y) b (V=39
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The step characteristic spatial quadrature is advantageous for use
in the discrete elements method for both the auxiliary and main fluxes.
It is unconditionally stable and convergent, as well as being a positive
method. These features provide the smooth results needed for the
auxiliary fluxes, but with much better accuracy than the step
quadrature. The step characteristic quadrature also has the accuracy
needed for the main fluxes. However, the accuracy of the method depends
upon the relation between the streaming azimuth and the cell shape. If
the streaming direction is at or near the cell diagonal, the method has
excellent accuracy, but it provides comparatively poor accuracy for
directions which are far from the diagonal. The nature of these

inaccuracies is considered in detail in the next chapter.

C. Summary

This chapter has reviewed the spatial quadrature methods used in
one- and two-dimensional discrete ordinates and for evaluation of the
discrete elements method. The step method is computationally
inexpensive, and is inaccurate but positive and smooth. The diamond
difference method is computationally moderately expensive and is
accurate in computing global quantities, such as total absorption rate,
but is less accurate for pointwise quantities, such as the scalar flux
as a function of position. This inaccuracy is because diamond difference
is not a positive method, and hence predicts negative fluxés (if the
space mesh is too coarse) or spatially o;cillating fluxes, in any case.

The diamond difference method may be used with negative flux fixups,

which introduce nonlinearity into the method, and reduce accuracy of

global gquantities, but which prevent negative fluxes and so improve the
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calculation of pointwise quantities. The step characteristic method is
computationally relatively expensive because of the exponential function
it uses, but provides both smoothness and accuracy. In one dimension,
the linear characteristic method is also selected for testing. It is
higher order than the step characteristic and has improved accuracy,
espeéially with relatively coarse spatial meshes.

Later chapters report the results of testing the discrete element
method with various combinations of methods of spatial quadrature used
for the auxiliary and main fluxes. In order to interpret these results,
it is necessary to consider the characteristics of the spatial
quadratures as well as those of the angular quadratures. This is the
reason for the detailed review presented here. The interaction of the
spatial and angular quadratures is similarly important, and 1is

considered in the next chapter.
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VI. Interaction of Angular and Spatial Quadrature:

Ray Effects and Quasi-Ray Effects

The objective of this research is to develop and evaluate a method
of numerical neutron transport which handles difficult problems better
than discrete ordinates and which reduces ray effect. The discrete
elements method attempts this by coupling the angular and spatial
quadrature and by using a composite angular quadrature. In order to
accurately interpret the results of numerical testing, it is first
necessary to consider what sorts of errors are attributable to the
angular quadrature in SN and what sorts are due to the spatial
quadrature, and how the two interact. The purpose of this chapter is to
investigate these deficiencies and interactions. The approach is to
solve a simple problem, a square source in a square non-scattering
absorber, using combinations of analytic and discrete angular and

spatial quadrature.

A. The Square-in-a-Square Problem: Without Scatter

Figure VI-1 shows the test problem and a benchmark solution. The
problem is a 4 cm by 4 cm square absorber with an absorption cross-
section of 0.75 cm-1 and scatter cross-section of zero, located in a
vacuum. A source of strength 1 n/cmz/sec is distributed throughout the
central 1 cm by 1 cm subregion. Only the upper right quadrant of the

problem is actually solved. The rest of the problem is represented by

PRI j A—’}J_.n'_-l‘:' P I l‘_‘}l‘- P PR P 4




reflecting boundaries. Also shown is a benchmark solution for the y
component of scalar current, Jy, along the top edge of the square. This
solution used Monte Carlo spatial and azimuthal integration and 2-point
Gauss-Christoffel polar integration of a Green's function kernel. The
curve is obtained from 16 data points, each representing the average
current in an interval 1/8 cm in width.

This benchmark solution shows several qualitatively expected
features. The current is nowhere zero. The current is monotone
decreasing, as a function of x (along y = 2 cm). The current should have
zero slope with respect to x at x=0 (by symmetry), and the solution
approximates this feature. The slight lack of smoothness is due to the

variance of this Monte Carlo solution, which used 200,000 particles.
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Fig. VI-1: Square-in-a-Square, Non-scattering Absorber Problem
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B. Angular Truncation Error and Ray Effect

Any finite numerical representation of the angular dependence of

the flux will suffer truncation error. This results in inaccuracy of the
computed scalar fluxes, which feeds back through the scattering source
in the transport equation to cause inaccuracy in the spatial variation
as well. One of the objectives of the discrete element representation is
to reduce this error and thus improve the accuracy of computed
guantities.

Ray effect, however, is a particular sort of systematic error which
causes computed results to be qualitatively wrong, as well as
quantitatively inaccurate. The term "ray effect” is often used loosely
to describe any such qualitative deficiencies. For the purposes of this
discussion, a more precise definition is needed.

Ray Effect: The prresence of qualitatively unreasonable
numerical results caused by the use of a discrete
angular representation of the directional flux, which
would be present even if the spatial quadrature were
performed analytically, or with a vanishingly fine mesh.

As an example of ray effect, figure VI~2 shows results for the test
case of figure VI-1l. These are Green's function solutions with discrete
ordinates angular quadrature, evaluated at the midpoints of 16 intervals
of width 1/8 cm along the top edge of the problem. The SZG,lR and SZG,ZR
solutions show the results of projecting a single ray from the source
region to the edge of the absorber. These solutions are neither non-zero
everywhere nor monotone decreasing. However, comparison with the
benchmark solution shows S to be essentially converged in

2G,64R

azimuthal quadrature.
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C. Quasi-Ray Effect and Spatial Truncation Error

As with the angular representation, the finite numerical

representation of the spatial variation of the fluxes results in

DR

truncation error causing quantitative inaccuracy of computed results.

s
W

Although less generally recognized, systematic errors can also occur,
resulting in qualitative inaccuracy. These inaccuracies are, in
practice, quite difficult to distinguish from those caused by the
angular discretization, but the conceptual distinction is important. In
view of this, the term quasi-ray effect is defined for use here.
Quasi-Ray Effect: The presence of qualitatively unreasonable
numerical results caused by the use of a discrete

spatial representation of the directional flux, which

would be present even if the angular quadrature were
performed analytically, or with a vanishingly fine mesh.
As an example of quasi-ray effect, the test case of figure VI-1 is

solved by S using discrete spatial quadratures. Since the angular

2G,64R
quadrature is essentially converged, any appearance of ray effect should
be attributable to the spatial quadrature. The spatial mesh used is 16
by 16 cells of size 1/8 cm by 1/8 cm. The resulting curves of JY are

thus comparable to those presented above. Figure VI-3A shows the results

for two spatial quadrature methods, diamond difference with negative

flux fixup (DDF) and step characteristic (SC). With a total cross-
section of 0.75 cm-l, the cells are slightly less than 1/10 mean free
path in height and widtl, and this is a fine enough mesh that the DDF
curve nearly matchkes the corresponding analytic curve in figure VI-2,

The spatial oscillations of DDF, like noise, have averaged out.
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The SC solution in fiéure VI-3A shows a distinct quasi-ray effect.
The flux directly above the source region is too high and that just
adjacent is too low. This comes about in the following way. Consider one
of the azimuthal quadrature directions in the SZG,64R set which
represents streaming of particles upward and to the left, as shown in
figure VI-3B. If the SC method were to accurately represent a collimated
beam of particles streaming in this direction, starting with a source
only in cell 7, then the flux would step through the space mesh
obliquely, as does a knight on a chess board, moving from cell 7 through
cell 6 of that figure, so that none of the flux would reach cells 3 and
9. However, because the SC method assumes a constant flux distribution
along each cell interface, part of the flux is "averaged" to the right
along the 7-8 interface, and again along the 8-9 interface, arriving,
incorrectly, in cell 9. Similarly, some of the flux crosses through cell
4 into cell 5, and is "averaged" to the left along the 4-5 interface,
thence crossing through cell 2 into cell 3. Thus, some of the flux goes
off to the left like a bishop, while most of the flux goes up the grid

like a rook. Rather than a collimated beam, the streaming is modelled as

a broad swath which more-or-less averages out to motion in the intended ‘
direction. The closer that direction is to diagonal, the better
collimated the beam; but for directions far from the diagonal, the flux
moves straight up the grid with a small smear out to one side. Since the
SZG,64R quadrature includes many such oblique angles, this error
accumﬁlates systematically, overestimating the flux directly above the
source. The flux is decreased just outside this band, i.e. at x just

greater than 1/2 cm, since the particles that should have arrived there

have increased the flux above the source, instead. Similarly, transport
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along the cell diagonals (like a bishop) accumulates so that the flux
diagonally opposite the source (near x = 2 cm) is also overestimated.
The overall result is qualitative error which is similar to what
one would expect for ray effect if a quadrature set which included only
the verticle and diagonal directions were used. This is the quasi-ray

effect defined above.

D. Combined Angular and Spatial Truncation Errors

In practice, both the spatial and angular quadratures are discrete
so that it is difficult to distinguish ray effect and quasi-ray effect.
The use of analytic spatial or angular quadrature is normally
infeasible. Only the simple example chosen here, without scatter, has
made it possible to demonstrate the independent nature of each.

Figure VI-4A shows the S solutions for step, DDF, and SC

' 2G,1R
spatial quadratures for comparison with the analytic spatial quadrature
of figure VI-2, The step method results are very smooth and show the
presence of flux throughout the absorber region, for reasons similar to
those discussed above with reference to the SC method. The DDF results
resemble the analytic solution well in that regard (no current for x < 1
cm), but show the lack of smoothness typical of the method. The SC
results show excellent accuracy (of spatial quadrature) for this case of
diagonal streaming.

Figure VI-4B shows the S solutions for DDF and SC spatial

2G,2R
quadratures. Compared with figure VIi-2, the DDF results are generally
correct, but lack smoothness. The SC results are smooth, but show the

beam spreading described above for this non-diagonal streaming

direction.

VI-8
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?‘ Carlson and Lathrop have remarked upon the interaction of spatial
{
25 and angular quadrature.

<

\Q

\j "Experience has shown that errors involved in spatial

tw and angular quadrature are interdependent. Qualitatively, the

W error surface is like a valley between two ridges. If error

) is plotted against order of angular quadrature along one axis

N and order of spatial quadrature along an orthogonal axis, the

}. ridges of the surface lie above these axes. Hence, if a

E; calculation gives a result in the error valley, both

:{ quadratures must be refined to remain in this error valley.

- On the other hand, for a given spatial mesh, refining the

_ angular quadrature may actually increase the error, and

- conversely.” (Ref. 4:35]

lf The examples presented in this chapter tend to explain these
;: observations. A low order angular quadrature should suffer from strong
:3 ray effect, due to the use of a few narrow beams of streaming particles;
f:% but the spatial quadrature, for a similarly coarse mesh, broadens out
[y . : .

: these narrow beams, reducing the apparent ray effect. Arbitrarily
AR

i refining only the spatial mesh would narrow down the beams, letting the
fi- ray effect be seen. Conversely, a coarse spatial mesh should suffer from
.. strong quasi-ray effect, but a correspondingly coarse angular mesh
:tf prevents this. With only a few angles, the spatial errors seem random,
P

ij and are considered as mere truncation error. But arbitrarily refining
o only the angular mesh causes accumulation of this systematic error,
. letting the quasi-ray effect be seen.
:fﬂ E. Summary
"“ This chapter has demonstrated some characteristics of the discrete
N ordinates method.
:f 1l - spatial quadrature schemes smear out the angular rays

- 2 - Use of a limited number of angular directions often ameliorates
e
e the quasi-rays of the spatial scheme
e |
-:\.
e
<o
=y
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Success of sN may be due, in part, to the combination of these two
effects. On the other hand, the general truncation error implicit in the
method has precluded application to some types of problem, such as
vacuum ducts.

The discrete elements method avoids ray effects not by smeariné out
fixed rays, but rather by steering the rays. This means of coupling the
spatial and angular representatinns then requires a spatial quadrature
scheme which will accurately propagate the element flux as a collimated
beam in the steered direction. Recent progress has been made in
developing higher order spatial quadrature schemes, such as the linear
characteristic and linear nodal methods, which should be of value in
this regard. The discrete elements method may also be viewed as a higher
order angular quadrature scheme, which should complement these new
spatial quadratures. Success of the discrete elements method should be
judged both on its ability to produce the results of a high order
discrete ordinates calculation with the use of fewer rays, and on its

ability to handle difficult problems more accurately than SN' The

following chapters present the results of numerical testing of this

ability.
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VII. Versions of the Discrete Elements Method

The previous chapters have shown that there are several degrees of
freedom in designing a discrete elements scheme: quadrature rule for the
individual elements, angular mesh type and size, spatial quadrature for
the auxiliary and main flux calculations (not necessarily the same), and

the coupling between the auxiliary and main fluxes.

A. Specification of a Discrete Elements Numerical Scheme

Notation to identify the particular combination of choices
constituting a specific discrete element method is defined as follows:

Prefix - the general notation, L is preceded by an abbreviation

N’
indicating the quadrature rule used within each discrete element:
SR - Simpson's rule
G3 - Gauss-Legendre three-point quadrature
NC - Newton-Cotes (five-point) rule
Subscripts ~ the general subscript, N, is replaced by a subscript
indicating the type of angular mesh and number of mesh intervals. These

subscript conventions were introduced in chapter III.

Superscripts - the superscripts indicate the spatial quadrature

method(s) used for the auxiliary and main fluxes. The abbreviations for
the superscripts are:

Step - step method

DD - diamond difference

DDF - diamond difference with negative flux fixup

SC - step characteristic

LC - linear characteristic
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Thus, a notation of G3-~L SC/DDF

d i i isc
26,3 would indicate a discrete

elements scheme with three-point Gauss-Legendre quadrature in azimuth
within each element of a three cell equal weight azimuthal mesh and with
two-point Gauss-Christoffel polar quadrature, where the auxiliary fluxes
are calculated by the step characteristic method and the main fluxes by
diamond difference with negative flux fixup. Portions of the notation
which are determined by the context of a discussion are usually omitted,

for simplicity.

B. Coupling of Auxiliary and Main Fluxes

In computing the auxiliary fluxes by the discrete ordinates method,
it is possible to either use the scalar flux from the main calculation
or to compute a separate scalar flux directly from the auxiliary fluxes.
In the former case, the auxiliary fluxes are coupled to the main fluxes
by feedback through the source term. In the latter case, the auxiliary
fluxes are uncoupled from the main fluxes. (Note that the main fluxes
are always coupled to the auxiliary fluxes through the estimation of the
streaming directions of the main fluxes, which is the object of the
exercise.) Coupling would seem toO offer more accurate auxiliary fluxes,
and hence more accurate steering of the main fluxes, assuming stability
is satisfactory. On the other hand, uncoupling preserves the linearity
of the auxiliary flux calculation, ensuring convergence. Uncoupling also
means that the streaming directions of the main fluxes are fixed, in the
sense of being determined independently, so that the convergence of the

main calculations is also assured.
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The relative merits of coupling vs. uncoupling were evaluated in
one-dimensional LN and coupling was consistently the more accurate
technique. Uncoupling speeded convergence only slightly, for the
problems considered. Uncoupling could allow the streaming directions to
be computed in advance and stored for use in the main calculations
{although this would require rather vast storage resources for practical
problems), but the decrease in computational effort of this scheme
proved negligible. It was concluded that coupling is the scheme to use.
If poor convergence is encountered, convergence can be improved by
refining the spatial mesh or using a smoother spatial method, rather

than by uncoupling. The results and conclusions presented in this

dissertation refer implicitly to the coupled form of discrete elements.

C. Optimization

For computer implementation, a numerical method may be optimized in
two important ways: with respect to execution time and/or with respect
to storage. The dollar cost of a calculation may be dominated by either
of these factors, depending on the computer facility. One of the

objectives of this research is to identify the "best" discrete element

method, based on accuracy vs. execution time with near minimum storage.

The next chapter presents execution time and storage requirements for

two-dimensional versions of the discrete elements method.
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v This chapter compares the computer execution time and memory
-%: requirements of the discrete elements and discrete ordinates methods.
E? This information facilitates cost-effectiveness comparisons of the two
. methods and establishes the feasibility of the discrete elements method.
ffi A. Problem and Quadrature Dimensions

- The following memory requirements apply to a problem mesh
;3 consisting of I cells in the x direction by J cells in the y direction,
:£ and K polar directions or elements by L azimuthal directions or
;(' elements. The IJ space cells are partitioned into R regions of constant
E} material and source parameters, not necessarily contiguously located.

?i B. Discrete Ordinates Memory Requirements

= The discrete ordinates method requires the following arrays:

.E Spatial Arrays - Three arrays of size IJ are required for the all-
jé angle flux for the previous iteration, Fold' the scalar flux for the
j% iﬁeration in progress, Fnew' and the indexing array which records to
22 which region each cell belongs. Three arrays of size R are required for j
% the material constants, ¢, ¢, and Q0(= §/0). One cell spacing array of
L’ size I is required for Ax, and one of size J for Ay, assuming non-
;; uniform cell sizes.

E: Angular Arrays - For minimum storage, two arrays of size K are
;i required: one for sin(®) and one for the polar weights, Wk.'rwo arrays
i% of size L are required for the azimuthal angles and weights. Execution
::

VIII-1




speed is slightly enhanced if arrays of size KL are used for u, n, and
- W,

ill‘ k,1

- Cell Boundary Flux Arrays - If two vacuum boundaries are available,

- then the boundary values of the directional fluxes need not be stored

i{- between iterations. Within an iteration, two arrays of size I and two of
~ size J are required for the intercell boundary fluxes. If there are no
vacuum boundaries, then KL sets of these arrays are required to save the

needed boundary values of the directional fluxes between iterations.

s
o e
2",

Optical Thickness Arrays - Although not required, execution speed

4

iﬁ is improved if the optical thicknesses of cells in each region and in
\is: each quadrature direction are stored. Assuming a uniform space mesh

(4
:Ej within each region, this requires two arrays of size RKL, otherwise it
;Ei would require two arrays of size IJKL. This is probably impractical
5t; except in the former case and with relatively small R, and it is assumed
}ff that these arrays are not used.
o
t?: Minimum Memory Requirement:
“f' With Vacuum Boundaries: 3IJ + 3R + 3(I+J) + 2(K+L)
{ﬁ{ Without Vacuum Boundaries: 3IJ + 3R + (2KL+1) (I+J) + 2(K+L)
;ii C. Discrete Elements Memory Requirements
1;; The discrete elements method requires the storage described above
Ei; for the discrete ordinates method, with the element main fluxes taking
Eﬁ the place of the ordinate fluxes, and has additional storage
:i requirements for the auxiliary fluxes. Assuming the element quadrature

rule has A auxiliary fluxes per element, the following minimum of arrays
are required:

) With two adjacent vacuum boundaries, 2A arrays of size I and of

%{? size J are needed for the intercell auxiliary fluxes and 2A arrays of

VIII-2
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size K and of size L are needed for the auxiliary direction quadrature
parameters. Without vacuum boundaries, KL sets of 2A arrays of size I
and of size J are needed for the auxiliary flux boundary values, in
addition to the auxiliary quadrature parameter arrays.
Minimum Memory Requirement:
With Vacuum Boundaries:
3IJ + 3R + (2A+3) (I+J) + (2A+2) (K+L)
Without Vacuum Boundaries:

3IJ + 3R + [2KL(A+1)+1](I+J) + 2(A+1) (K+L)
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Fig. VIII-1l: Quadrature Set for SR-L

2G,3

Acditional memory may be used to speed execution with Simpson's
rule or Newton-Cotes rule, as mentioned in chapter III. As an example,
figure VIII-1 shows the quadrature set for the SR—L2G’3 scheme for the
principal octant. The circles mark the element center auxiliary
directions; the squares mark the element edge auxiliary directions at

the 2dges of the octant; the diamonds mark the element edge auxiliary

directions internal to the octant. Each of these last four directions is

VIII-3
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S common to two elements, and could be computed (throughout the space
3 mesh) only once, with the first element walk, and reused for the second
-t element walk. This results in a 10%-15% savings in execution time for
LR

N~

. this quadrature. The cost in storage is an additional array of size- 1J,

? if no vacuum boundaries are used, and two such arrays if vacuum
”{{i boundaries are used (since octants are done in pairs: a single elements
:::~ is walked in from vacuum boundary to non-~vacuum boundary, reflected, and
g walked back out to the vacuum boundary). To take full advantage of this
'ixi quadrature set overlap in SR--LK L requires (K+1) sets of these arrays. K
Y i ’
.X\;

AN sets are required for the directions marked with triangles in figure
At VIII-2, an example showing SR-L2 37 and one set is needed for the
-._ ) ’

{}t diamonds. This provides about a 15% savings for this example, and up to
{f\'

e about 25% for a fine angular mesh.

o 1 = = &

i T4 0 A 0 A o &
. 1

T bl A O A

R T 2 - < v

- o 1

- o A o ¥4\ o o

\

. 0

e 0 8— €3 15}

n/12 /g n/y n/3 5m/12 n/3
AR —

.-

DN Fig. VIII-2: Quadrature Set for SR-L2 3

n ’

;;: This memory requirement, (K+1)IJ, may be prohibitive, but it can be
o quite reasonable when compared to the GIJ storage (for Fold) required

- for G energy groups, since G is often large and K=4 is probably maximum.
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D. Example Comparison of Storage Requirements

Table VIII-1 shows the~memory requirements for an example case of a
100 cell by 100 cell space mesh with 25 regions. The minimum memory
requirements, measured in array elements, are given for two situations,
with and without vacuum boundaries. The formulas for conventional sN are

slightly different than those above, and the result is shown for S__.

16
Method With 2 Vacuum Boundaries No Vacuum Boundaries
516 30,783 44,783
52G,3R 30,685 32,685
L2G,3 31,915 39,915
L2'3 32,735 44,735

Table VIII-1l: Example Case Memory Requirements

With two adjacent vacuum boundaries, the extra memory required for
the discrete elements method is negligible. Without vacuum boundaries,
it is larger, but not problematical. For very large spatial mesh
problems, where memory may be a limiting factor, the three arrays of
size IJ dominate all the schemes, so that the discrete element method is

essentially equivalent to discrete ordinates in storage requirements.

E. Execution Times for SN Spatial Quadratures

The execution speed of the discrete ordinates method is determined
almost entirels by the spatial quadrature subroutine. Table VIII-2 gives
thz aopr:'w’-.ate execution costs of elementary mathematical floating
point c¢péeations and function evaluations in units of Cray-1 clock

cycins. A short accuracy square root routine of approximately six
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decimal place accuracy is estimated to be achievable using 65 clock

cycles. A short accuracy (four to six decimal places) routine for
evaluating both the sine and cosine costs 46 cycles using the following

formulas [Ref. 1:76]:

v=u?®*u (VIII-1)
cos(u) = (.03705 * v ~ .49670) * v + 1.0 (VIII-2)
sin(u) = ((.00761 * v - ,16605) * v + 1.0) * u (VIII-3)
Operation: + - * / if exp sqrt sin & cos (both)
Clock Cycles: 4 4 S 20 8 128 65 46

Table VIII-2: Cray-1 Floating Point Execution Times

Estimates of the execution costs of the two dimensional spatial
quadrature schemes of chapter V, based on the above clock times, are
presented in table VIII-3. Larsen and Alcouffe [Ref. 5] have recently
developed a linear characteristic method for xy geometry with a cost of
about 600 clock cycles. The diamond difference method requires more than
the indicated 102 clock cycles for cells where fixups are required; the
step characteristic method requires élightly less than 267 cycles if the
quadrature direction lies exactly on the space cell diagonal. The

numbers given are generally representative, however.

XY Spatial Quadrature: Step DDF sC LC

Clock Cycles per Call: 56 102 267 600

Table VIII-3: Discrete Ordinates Spatial Quadrature Subroutine Costs

VIII-6
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F. Execution Times for LN Streaming Direction Averaging

The cost of execution of a discrete elements scheme is determined
by the sum of three sets of subroutine calls:

1 - Auxiliary flux spatial quadrature (per table VIII-3)

2 - Streaming direction flux-weighted averaging (per table VIII;4)

3 - Main flux spatial quadrature (per table VIII-3)
The spatial quadratures are computed by the same subroutine(s) as in
discrete ordinates, although different schemes can be used for the main
vs. auxiliary fluxes. The extra cost of the discrete elements method
(besides the auxiliary flux calculations) is for the computation of the
flux-weighted streaming directions. These costs are presented in
table VIII-4, below, and assume the use of short accuracy square root,
sine and cosine algorithms. Values are given for those xy geometry
methods which were tested. An alternative scheme of directly averaging
the x- and y-direction cosines was tested and abandoned. It avoided the
sine and cosine needed to convert the averaged (1,4 to (,n), but cost
167 clock cycles and gave unsatisfactory numerical results. The short
accuracy sine and cosine fits proved to have no degrading effect on the

overall accuracy of the discrete elements method.

Method: Clock Cycles:
Simpson's Rule or Gauss-Legendre (3-point):

Azimuthal averaging only (LKG,L) 160

Azimuthal and polar averaging (LK L) 288
’

Newton-Cotes (5-point) Rule:

Azimuthal averaging only (LKG,L) 186

Table VIII-4: Execution Times for LN Streaming Direction Averaging

VIII-7
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-5 G. Example Execution Cost Comparison

As an example of the use of the above information, consider a

comparison of S SC and 63-1L S5¢,s¢

16 26,3 . The discrete ordinates scheme,

516’ uses 144 total quadrature directions, for a cost of 38,448 cycles
per space cell. The G3-L discrete elements method uses three auxiliary
fluxes, one direction averaging, and one main flux for a cost of 1228
cycles per element per space cell. With 24 elements total, the cost is

29,472 cycles per space cell. Assuming both converge equally rapidly,

these figures give the relative cost of the two methods: G3-L2G 3SC’SC
14

costs about 77% as much as Sl6SC.

H. Computer Programs for Testing the Discrete Elements Method

The computer programs used to test the discrete elements method
were written in Fortran-IV (with extensions similar to WATFIV) and run
on an Intel-8088 based microcomputer. The programs were specialized to
handle the test cases efficiently and so are not of general
applicability. For this reason, and because the programs were
straightforward implementations of the equations and algorithms
described in this report, listings of the program code are not included
‘here, but are on file at the Phygics Department of the Air Force
Institute of Technology, Wright-Patterson AFB, Ohio, 45433.

The discrete ordinates codes were validated by comparison with

sample cases run for that purpose by E. W. Larsen of the Los Alamos
National Laboratory. The discrete elements codes were validated by use ‘

of the midpoint rule for the element quadrature and comparison with the

equivalent product quadrature discrete ordinates calculations.
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o I. Conclusions

As with most higher order methods in numerical analysis,
fﬁ; computer implementation of the discrete elements method entails three

costs: increased program complexity, increased storage requirements, and

increased execution times. The remainder of this report will deal Qith
the question of whether the method also provides increased accuracy,
and, if so, increased efficiency on the basis of cost vs. accuracy.

Chapter II presented the discrete elements algorithm, and showed
that the essential simplicity of structure of the discrete ordinates
method is retained.

This chapter has shown that the LN method has only modestly
increased storage requirements, if a vacuum boundary is present in both
the x- and y-directions. In the absence of vacuum boundaries, the
storage requirements are more substantial, but still about equivalent to
SN requirements. The storage penalty is of even less concern in multi-
group problems, since the increase only applies to the one energy group
being iterated at a time.

Execution times are similarly increased, but are comparable to

discrete ordinates gquadratures currently in use, such as S Two

16°
approaches to minimizing execution costs are possible. One is to use the
ieast expensive of spatial quadrature schemes for the auxiliary fluxes,
since most of the cost of the method is for these calculations. The
other approach is to use the highest order of spatial quadratures for
both the main and auxiliary fluxes so that the spatial mesh may be
coarse. The next chapter evaluates these approaches for the case of one-

dimensional (slab) geometry, since high-order spatial quadratures are

readily employed in this geometry.

VIII-9
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IX. Test Cases in One-Dimensional Geometry and Results

;}; This chapter compares the performance of LN and sN schemes for two
j}i problems in one-dimensional Cartesian geometry. Evaluations in xy-
geometry are presented in the next chapter.
;;}: A. Scatter-Free Shield Penetration
o This test problem consists of a uniform , isotropic flux incident
‘:f; upon the left of a shield, with vacuum on the right of the shield. The
_\"_\. , , X . .
5 shield is 20 mean-free-paths (mfp) thick and is purely absorptive. The
;{. exact solutions for the directional flux and current within the shield
o are the analytic functions:
N
~ o
K Fux) = Fj e x A (I1X-1)
-".-

. -0X /A
i = -
N Jx(u,x) HFO e (IX-2)
;::'
B %

' Integrating equation (IX-2) over j at gx = 20 gives the current
o . .
N penetrating the shield:
o
A
YN J, = 0.5 E,(20) = 4.50456 E-11 (I1X-3)
f:i where FO =1 and E3 is an exponential integral.
e
jn: The problem was solved using SN with equal weight quadrature and
-
i with Gaussian quadrature, and using LN with equal weight elements and
‘ﬁi Gaussian weight elements for various angular meshes and space schemes.
&; In each case, 40 space cells of 1/2 mfp thickness were used. For this
s . "

N problem, since Q =0 in every cell, the step characteristic (SC) and
:i; linear characteristic (LC) methods are identical.
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Table IX-1 presents the error ratio of the current penetrating the

shield for the various schemes. Error ratio is a computationally

convenient measure of error, here defined as

Error Ratio (x,x ) = |x -

exact | / IX tx

(IX-4)

x
exact exact|

where xexact is the reference or benchmark value. This has the advantage
over percentage thet if x is too large by a factor of 2, the relative
error is 100% but if x is too small by a factor of 2, it is -50%,
whereas the error ratio is 1/3 in each case. For small errors, the error

ratio is approximately half the conventional relative error. An error

ratio of .05 corresponds tc approximately 10%, for example.

Method  N: 2 4 6 8 12 24

Three-Point-Gaussian Discrete Elements:

LEwSteP/SC .556 .303 .210 .149
LGWSteP/SC .556 .220 .0846 .0407 .0191 .00504
L S¢/sC .395 .0488 .00880
EW
/
LGWSC’SC .395 .0106 .00122  .000506
Simpson's Rule Discrete Elements:
LEWSC/SC .578 .310 .146 .0670 .0169
LGWSC/sc .578 .161 .0223 .00930  .00208  .00012
Discrete Ordinates:
sc
Se 1.000 .978 .791 .553 .273 .0696
sGQSC 1.000 .572 .0759 .00138  .000007 0
N8 16 24 32 8
sc
Sy .553 .156 .0696 .0392 .0174
sGQSC .00138  .000007  .0000004 0 0

Table IX-1l: Error Ratio g£ Shield Penetration Current

IX-2
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U, 1. Step vs. SC for Auxiliary Fluxes

Step/sC sc/scC

A comparison of the L results with the L results
indicates the superiority of using the higher order method for the

auxiliary calculations. Even if allowance is made for the lower cost of

the step method, SC is more effective. For example, assuming the step

™
-
'\ :3 method costs 1/4 as much as the SC method, then with three auxiliary
AL
PR Step/SC sc/scC
}i?: fluxes per element, LBEW costs about the same as L4Ew , but
. has three times as much error. For larger N, the disparity in
bi~ :
3onY performance is even greater.
“ _\‘
n.*-
AR 2. Simpson's Rule vs. Gauss-Legendre (3-point) Quadrature
oot
. S
'iﬁ A comparison of the G3--LSC/SC and SR—LSC/ ¢ results shows

e
oty
..

consistently better results for the G3 method. Even if the SR scheme

e
4
-

a
»
.. [ ‘l.

'.’-’f}‘f’n"”
.
1]

o

reuses the overlapping auxiliary fluxes, and so costs only 3/4 as much

as the G3 scheme, it still cannot compete. For example, the G3-L6Ew and

the SR—L8Ew cost about the same, but the SR scheme has over 7 times

larger error.

s 3. Equal Weight vs. Gaussian Weight Discrete Elements

E§§ The Gaussian weight discrete elements outperforms the equal
:2; weight quadrature mesh for this problem. The reason is that the flux
fE; penetrating completely through a 26 mfp thickness of non-scattering

absorber is strongly forward-biased, so that the element(s) closest to

¥ =1 carry all the information., With Gaussian weights, the discrete

{

elements are crowded toward the poles and sample this information more

.
)

:f: effectively.
LA
\"'-
T 4. Discrete Elements vs. Discrete Ordinates

ppi
.« When compared on the basis of number of elements/ordinates,
o SC/sC sC
- the G3-L / schemes have smaller error than the S schemes, but also
S
o
O IX-3
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have slower convergence as N is increased. For large enough N, it is
expected that SN will be the more accurate. These discrete element
methods, however, have roughly four times the cost per element of the

discrete ordinates schemes. Comparing S_ to L etc., the Gauss-Legendre

8 2!
quadrature discrete ordinates method is quite clearly the most cost
effective scheme tested, for this problem. The bottom rows of table IX-1
facilitate this comparison. This is not necessarily a representative
comparison, however, because the problem is ideally suited for the SN
quadrature in two ways. First, the angular flux distribution which SN
seeks to represent with a high-order polynomial is in fact an analytic
function well suited to such a representation, namely, the function in
equation (IX-1). Secondly, the SC spatial quadrature is exact (except
for rounding error accumulation) for this source-free, scatter-free

medium, so that the data points used to obtain the high-order fit have

essentially no error.

B. Two-Region Problem

This problem consists of a strongly scattering source region with

weakly scattering shielding and vacuum outer boundaries. Only half of

the system is solved, using a symmetry boundary on the left and vacuum

on the right. The problem parameters are summarized in table IX-2,

Region Source c Region Width # of Cells Cell Width
(#/cmz/sec) (cm)

Source 1 0.5 5 40 0.125

Shield 0 0.1 15 120 0.125

Table IX-2: Parameters for Two Region Test Problem

IX-4
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1. Error "Norms"

Two error norms are used in each region. (The term "norm" is
used loosely bh¢ ce; no attempt is made to demonstrate that these are true
norms in the function-analytic sense.) One is an integral norm: the
error ratio of the integral of the scalar flux over the region. This is
a measure of the ability of the method to compute reaction rates or
related eigenvalues. The other is a pointwise norm: the error ratio of
the scalar flux as computed for each spatial cell, averaged over the

cells of the region. Tables (IX-3) through (IX-6) present these results.

Method OQuadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

LEwStep/DDF .000112  .000058 .000044  .000038
EwSteP/LC .000097  .000040  .000025  .000019
LGwStep/LC .000097  .000054  .000035  .000026
LEwLC/LC .000021  .000012 .000011  .000010
LGWLC/LC .000021  .000014 .000012 .000011
Simpson's Rule Discrete E .ements:
LEWLC/LC .000103  .000004  .000006  .000009
Gaussian Quadrature Discrete Ordinates:
sStep .00619 .00200 .000983  .000639
gPPF .00534  .00125 .000286  .000025
sSC .00537  .00128 .000329  .000022
L€ .00535  .00126  .000553 .000307 Benchmark
Quadrature: 8 1e 24
slc .000307  .000071  .000027

Table IX-3: Error Ratio of Scalar Flux Integrated over Source Region

IX-5
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2. Step/Lg vs. Step/DDF

‘',e least expensive discrete element scheme, per cell per
element, which might produce reasonable accuracy, is the LStep/DDF
scheme. The step auxiliary calculations are smooth and the DDF main
calculations are relatively accurate. Comparison of the results with

those of the LSteP/LC

scheme shows the latter to be more accurate on an
equal N basis and to have faster convergence in N, but (allowing for

twice the cost per element) the two are about equally cost-effective.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

LEWStep/DDF .00122  .000630  .000476  .000414
LEWSteP/LC .00105  .000432  .000268  .000201
LGwStep/Lc .00105  .000586 .000382  .000283
LEWLC/LC .000228  .000129  .000115 .0 9109
LGWLC/LC .000228  .000148  .000125  .000116
Simpson's Rule Discrete Elements:
LEWLC/LC .00112  .000041  .000070  .000093
Gaussian Quadrature Discrete Ordinates:
sStep .0630 .0214 .0106 .00693
sPPF .0548 .0134 .00312  .00109
sc
s .0552 .0138 .00357  .000241
LC
s .0550 .0136 .00600  .00334  Benchmark
Quadrature: 8 ég 25
LC
s .00334  .000771  .000293

Table IX-4: Error Ratio of Scalar Flux Integrated over Shield Region

IX-6
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3. Equal Weight vs. Gaussian Weight Elements

For both integrated and pointwise errors and in both source

and shield regions, L is more accurate, and hence more cost-effective,

EW

than LGW' The only exception in the four tables is the L, average error

4
ratio in the shield region. This observation holds for both the Step/LC
and the LC/LC spatial quadratures. The introduction of scatter and an
interior material boundary make this problem more realistic than the

non-scattering shield, and show the validity of equal weight composite

quadrature for less well-behaved fluxes.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

LEWStep/DDF .00106  .000540  .000392  .000356
LEwStep/LC .000816  .000276  .000142  .000087
LGwStep/LC .000816  .000441  .000253  .000162
LEWLC/LC .000314  .000073  .000057  .000046
LGWLC/LC .000314  .000109  .000068  .000061
Simpson's Rule Discrete Elements:
LEWLC/LC .00169  .000433  .000186  .000.03
Gaussian Quacd-ature Discrete Ordinates:
gStep .00761  .00258 .00211  .00259
gPPF .00855  .00241 .000780  .000303
s5¢ .00850  .00232 .000639  .000056
st .00846  .00227  .00104  .000597 Benchmark
Quadrature: 8 1s 24
sk .000597  .000149  .000058

Table IX-5: Average Error Ratio of Scalar Flux in the Source Region

IX-7
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4. LC/LC vs. Step/LC

For both integrated and pointwise errors, and in both source

and shield regions, and even allowing for a 2:1 or greater cost ratio,

Le/Le Step/LC

is more accurate and more cost-effective than L

sc/scC

. Similar
comparisons with L (data not shown) reveal the same trend: the
higher-order the spatial quadrature, the more accurate and cost-
effective the discrete element method. The use of LC for both auxiliary

and main fluxes can be even more efficient if its ability to use a

coarser spatial mesh is used to advantage.

Method Quadrature: 2 4 6 8 48

Three-Point-Gaussian Discrete Elements:

Step/DDF

Loy .0474 .0270 .0188 .0139
LEWStep/LC .0404 .0203 .0124 .00770
LGWStep/LC .0404 .0130 .0446 .00287
LEWLC/LC .0340 .000914  .000094  .000027
LGWLC/LC .0340 .000483  .000123  .000033
Simpson's Rule Discrete Elements:

LEWLC/LC .203 .0425 .0107 .00360

Gaussian Quadrature Discrete Ordinates:
gStep .601 .185 .223 .224
sPPF .707 .0785 .00700  .00593
s5¢ .704 .0737 .000915  .000260
i€ .704 .0738 .00324  .00113  Benchmark

Quadrature: 8 16 24

stc .00113  .000231  .000088

Table IX-6: Average Error Ratio of Scalar Flux in the Shield Region
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5. G3 vs. SR Element Quadrature

For pointwise errors, in both source and shield regions, the
three-point Gauss-Legendre quadrature provides clearly superior

performance. Even allowing for a 2:1 cost ratio (the actual ratio is

LC/LC

closer to 1l.2:1), the G3-LEw scheme is more cost-effective than the

e

EW scheme.

For the integrated flux errors, the evidence is not so clear-cut.
In the source region, for example, both methods converge toward an error
ratio of 0.000010, indicating this much residual error in the benchmark

(548Lc) solution. But they converge from opposite directions. The G3-L

4
is nearly converged, at 0.000012, and is actually closer than the SR-L6
which is also nearly converged, at 0.000004. However, neither of these
errors is large enough for meaningful comparisons. Similar logic applies

to the data for the shield region.

6. Discrete Elements vs. Discrete Ordinates

Comparison of the best discrete elements method tested, namely

G3-L LC/LC

EW . with the best discrete ordinates quadrature tested, S with

N

Gauss-Legendre quadrature, shows that the LN method is very much more
accurate, for the same N. On a cost basis, allowing for a 4:1 cost

ratio, the bottom row of each table can be compared directly with the LN

rows. In cerms of the integrated flux errors, the LN method is the

better performer. Even L2 has less error than 824,

computational cost. In terms of the average errors in the source region,

and at 1/4 the

LN is somewhat more cost-effective. Only in terms of the average errors

in the shield region is sN the more accurate for a given cost. This

occurs for reasons similar to those which applied to the non-scattering,

non-source shield penetration problem.
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:_: It might be argued that a double-range Gauss-Legendre gquadrature
':' would improve the performance of the discrete ordinates method for this
- problem by modeling the flux discontinuity at 4 =0 exactly, as with
-

Ej the double PN method. With this quadrature, SN could possibly be more
= cost-effective than LN' However, Carlson and Lathrop have reported .that
:'.'_: the single-range quadrature is more accurate for problems with optically
o

:i thick regions, while double-range is better for problems with many thin
o regions [Ref. 4:34]. The regions in this problem are optically thick (10
:'E and 15 mfp), so that the comparison with single~-range SN should be a
:' fair one.

.‘:‘

;\_ C. Conclusions

;3 This chapter has presented the results of numerical testing of

various discrete element and discrete ordinate schemes in slab geometry.

*;E: As a proof of concept, two test cases were used. While more extensive
.::: testing would be needed to support categorical conclusions, the data
i presented do indicate the following trends.

“; 1 - Equal weight discrete elements are generally more accurate than
>

}::: Gauss-Legendre weight elements, for realistic problems.

e

) 2 - Three-point Gauss-Legendre element quadrature is superior to

.-: Simpson's rule.

A

\ 3 - LN method can be more cost-effective than Gaussian SN when the
linear characteristic space scheme is used for both the auxiliary and
:. main fluxes, and the three-point Gauss-Legendre rule is used for the
Z-:: element quadrature.

: 4 - The expectation that "the harder the problem, the more
:C:,' advantageous the LN method" is supported by this evidence.

f
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5 - Convergence and accuracy of L

N are degraded by use of
inaccurate or, especially, non-smooth space schemes for the auxiliary
fluxes. LN with step characteristic or linear characteristic auxiliary
quadrature converged in the same number of iterations as SN' however.
The above tests in one dimension implicitly avoided consideration
of ray effects, since there are no ray effects, per se, in one
dimensional (time independent) problems. The next chapter uses two test
problems, one of which is similar to the ray effects problem of chapter

V. An objective of those tests is to determine the applicability in two

dimensions of the observations made here in one dimension.

IX-11
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X. Test Cases in Two-Dimensional Geometry and Results

This chapter compares the performance of LN and SN schemes for two
problems in two-dimensional Cartesian geometry. The first problem is a
variation of the square source in a square absorber problem introduced
in chapter VI. A review of results from the literature provides
qualitative comparisons of performance in ameliorating ray effects. The
second problem models a shielded plane source with a vacuum duct in the

shield, and is used for quantitative as well as qualitative comparisons

of performance on a difficult problem.

A. Ray Effect Problem and Comparison of Results

A test problem which has been used in the literature for evaluation
of ray effect is inset in fiqgure X-1l. The problem is similar to the one
used in chapter VI, but with the source square increased in size and
with scatter included. The resultslused for comparison are the cell-
average scalar fluxes along the top row (or up the right column, by
symmetry) of a 30 cell by 30 cell spatial mesh. This mesh is nearly

twice as fine as that used in chapter VI, so the quasi-ray effect should

be reduced.

1. Conventional Discrete Ordinates

Lathrop used this problem with several angular quadrature
schemes. Figures X-1 through X~4 are taken directly from reference 8 for
qualitative comparisons. Figure X~1 shows the results for sz, 54. and
816' using conventional (totally-symmetric) quadrature using TWOTRAN
{and presumably, diamond difference spatial quadrature). The substantial

wobbles in the curves are described by Lathrop-as ray effect.

X-1
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;f 2. Rotationally Symmetric Discrete Ordinates

Figure X-2 shows the results using discrete ordinates with a
product quadrature set consisting of a single row of directions at a
fixed latitude (polar angle), equally spaced in azimuth and equally

weighted, i.e., the "rotationally invariant" quadratures. In Lathrop's

A AANANES IV

notation, these are Rz, R4, Ra, and R16' These show decreased, but

r
-4

LA

still significant, ray effect.

LA
s

3. "Consistent® Discrete Ordinates

Figure X-3 compares the S result with that of Lathrop's CS

16 2
method. This "consistent SN“ method [Ref. 10) used explicit coupling of
the directional flux distribution to the spatial quadrature (as does
discrete elements) derived by a first-order Taylor expansion of the flux
about the sN quadrature angles. This scheme shows a vast improvement
over the S2 scheme (to which it degenerates if the coupling is omitted),

and might seem quite promising. Its limitation seems to be that the

"consistent" treatment is an approach rather than a numerical method, in

that to increase either the set of quadrature angles or the order of the
coupling terms, or both, requires a complete rederivation of the
equations to be solved. With the discrete elements method, however,
increasing the quadrature set is a strictly mechanical procedure, and
ihcreasing the coupling order requires only the use of a different

element quadrature rule.

4. Spherical-Harmonics-Like Discrete Ordinates

In any case, Lathrop abandoned the CS_, scheme in favor of

2
"spherical-harmonics=-like" discrete ordinates. This method uses
fictitious sources to cause the discrete ordinates equations to conserve

the same moments as the spherical harmonics method [Ref. 8], Results
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with these schemes, S _-» Pl’ S, -»> Pl, S_=-» P3, S_=-» PS' are shown in

2 4 6 8

figure X-4. They show no "ray effect" in that they are shaped correctly,
but they have angular quadrature truncation error which systematically
affects the level rather than the shape. The convergence in amplitude
{(vs. N) is relatively slow, as with the PN method. The method also has

substantially increased computational cost.

5. Compatible Product Quadrature Discrete Ordinates

Abu-Shumays [Ref. 2] investigated the possibilities of
improved performance through use of specialized "compatible" product
quadrature sets (with diamond difference spatial gquadrature). He
concluded that the Gauss-Christoffel polar / quadruple-range azimuthal
product quadrature has more accuracy and less ray effect, for this
problem, than any of the other quadratures he investigated. The results

for this quadrature, and S . are shown in Figure X-5, taken

S36,60 4G,8Q

directly from reference 2.

6. Discrete Elements

A variety of discrete element schemes were tested for this
problem using a 16 by 16 spatial grid. For the auxiliary fluxes, the
step method was found to be unacceptable in accuracy, while the diamond

difference method (with or without negative fixups) was inaccurate and

slow to converge (L

), or prevented convergence (L, _). With the step
t4

KG,L K,L

characteristic method for the auxiliary fluxes and either diamond
difference or step characteristic for the main fluxes, convergence was
as fast as for the SN method. As in the one~dimensional test problems,
the Gauss-Legendre three-point element quadrature was generally more
accurate than the Simpson's Rule. The Newton-Cotes rule was about as

accurate as the Gauss-Legendre, but at greater execution cost.
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The results of two calculations with the 30 by 30 spatial grid are

SC/DDF
2G,3

The SC/DDF solution shows a small amplitude wiggle which

shown in figures X-6 and X-7. The schemes used were G3-L and

sC/scC

G3-L2G,3 .

can be attributed to the spatial quadrature, since it is not present in
the SC/SC solution, and so is quasi-ray effect. The SC/SC solution ;lso
shows a quasi-ray effect, in that there is a slight break in slope at
x = 1 which corresponds to the edge of the source region (as was seen
in chapter VI). These quasi-ray effects were reduced by refining the
spatial grid from 16 by 16 to 32 by 32. The SC/SC curve falls between
the 86-9 P3 and 58-9 P5 curves of figure X-4.

Comparing figure X-6 with figures X-1 through X-5, it may be
concluded that, for this problem, the discrete element method, with as

few as three elements in azimuth per azimuthal quadrant, ameliorates ray

effect as well as the best of previous methods.
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2 B. Vacuum Duct Problem: Qualitative Comparison of Results
- The second test case is a duct problem which is diffaicult for
¥ discrete ordinates. A quantitative comparison of LN and SN 1s made.
<
¥
- Streaming ducts in shields are a common design problem for which
-2
empirical thumb-rules are often used. Where better solutions are needed,
L Monte Carlo methods provide accurate but expensive answers. This section
- presents graphs of numerical results and qualitative comparison; the
‘ next section presents quantitative comparisons.
- 1. The Test Problem
o
5 Figure X-8 defines a test problem consisting of a thin source
- region along the bottom of a shield with vacuum boundaries along the
\
- top, right, and bottom. The left side of the problem is a symmetry
h boundary, with a deep, narrow vacuum duct, or channel, along the edge.
\
. It is expected that the major leakage through the shield will be by
: streaming up the duct. This particular problem was selected as an
f idealized representation of an access port in a fusion reactor design.
Such access ports are required for plasma injection, charged particle
j heating beams, laser instrumentation, etc.
“ 4 __¢f" 11 Q ’ f 1
. - J_(x)
< Yy
.,
“
N +
: AEREE
B ~ N ) Vacuum
. > Q)
. vl ou >
X I Source:
% 7 S S=2 n/cm”/sec
. T 7777777 7
2

Vacuum 0%% x(cm) »

Fig. X-8: Vacuum Duct Problem Parameters
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2. Monte Carlo Benchmark Solution

In order to accurately assess the performance of both the

|
i
discrete elements and discrete ordinates methods, a benchmark solution ‘

known to be both accurate and free of ray effect was required. The Monte |
Carlo solution used for this purpose is shown in figures X-9 through ‘

X-13. The solution entailed the simulation of 106 particles. Data

ey

recorded included total leakage, total absorption, and leakage through

AP

each of 16 equal segments along the top edge of the problem,

corresponding to the 16 cell by 16 cell spatial grid used for the

A

i

discrete elements and discrete ordinates calculations. The relative

03
JURSUIN B

variance of the results was approximately 1% at the one-sigma level of

Ch i 4
PR

confidence for the least accurate of the 16 top face leakages. This

solution was provided by W. T. Urban of Los Alamos National Laboratory

F R I R )

in support of this research.

3. Conventional Discrete Ordinates

a8 -4
Fa

Vs

Conventional SN quadrature solutions using various spatial

quadrature schemes were provided by E. W. Larsen in support of thas

LA &

research. Diamond difference solutions are shown in figure X-9. There

are two striking observations to be made about SNDDF: the results are

LS

«Faifata

not good, and they don't improve much as N is increased. The currents
- are in error by factors of two to four over most of the top face of the

'j. problem, even for S which uses 36 gquadrature directions per octant.

16’

The step characteristic solutions are smoother and more accurate in

level, and are shown in figure X-10. Larsen and Alcouffe have developed

»
e & & A s af

a linear characteristic spatial quadrature method for xy-geometry

-

[Ref. 5). Results with this quadrature, shown in figure X-11, have some

3

improvement over the step characteristic method.
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4. Product Quadrature Discrete Ordinates

Figure X-12 shows the results of a discrete ordinates
calculation using a Gauss-Christoffel / rotationally symmetric product
sC

. This is

quadrature and step characteristic spatial quadrature: S2G 3R
’

the angular gquadrature underlying the discrete elements results
considered next. These results are greatly improved over the
conventional SN results, both in overall level and in shape. The
conventional SN gave a ratio of less than 4:1 for the leakage in the
duct to that on the right half of the top of the shield, even for 516'
The product quadrature gives a ratio of about 6:1, while the benchmark
ratio is about 12:1. In the next section, a “level norm"” and a "shape

norm" are introduced to properly quantify these observations.

5. Discrete Elements

Figure X-13 shows the results for the discrete elements

method: G3-L Sc/sc

2G.3 , with 16 by 16 and 32 by 32 spatial meshes. The
’

ratio of duct current to that on the right is about 11:1, much improved
over all the discrete ordinates methods. Also, the leakage is monotone
decreasing from left to right, as expected from the problem symmetry.

None of the discrete ordinates methods were correct in this regard.

- Deficiencies of this discrete element solution are:

a - The leakage through the duct is overestimated by 20%-30%

b - There is a slight hump to the curve at about x = 1.5 cm

c - The leakage through the shield away from the duct is
overestimated by about 15%
Item b is a ray effect and is eliminated in the L solution. The

3G,4

other two deficiencies are at least partially quasi-ray effect and are

reduced by the refined (32 by 32) spatial mesh.
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C. Vacuum Duct Problem: Quantitative Comparison of Results

This section makes a quantitative comparison of the accuracy of
discrete elements solutions with that of discrete ordinates solutions,
for the problem presented in the previous section. As in chapter IX,
informal "norms" are used for this purpose. Two such measures of error
are used. One is sensitive to the over-all amplitude of the top face
leakage. This "level norm" is the error ratio (defined by equation IX-4)
of the total leakage through the top face of the problem, i.e., through
the duct and through the shield, with respect to the Monte Carlo
benchmark solution. The table indicates the sign of the error: positive
for overestimated leakage, negative for underestimated leakage. The
other measure of error is sensitive to the relative distribution of
leakage through the top face. This "shape norm" is the average of the
error ratios of the 16 normalized cell currents. The currents are
normalized to give the same total leakage as the benchmark solution, so
that the norm will be sensitive to shape but not level. The performance
of various schemes tested is presented in table X-1, in terms of these
norms. Data is presented for the step characteristic spatial quadrature,
since the SC/DDF results show poor performance in the shape norm as a

LC

result of spatial oscillations (quasi~-ray effect). 516 results are

also included. Observations based on this data are preseated next.

1. Convergence of Conventional S

Refining the angular quadrature from S_ to provided

8 *° 516
negligible quantitative improvement in either shape or level. Refining

SC Lc

angular quadrature is essentially

the spatial quadrature from S however, improved the level

16

but not the shape. The conventional SN

converged, and with poor results.

X-16
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:ﬁ: Method Elements or Ordinates Level Norm Shape Norm Grid

SO per Octant

A

LA}

D G3--L2G'2 4 .1018 .0594 16x16

o~ SR-LZG,3 6 .0776 .0503 16x16

o G3-L, , 6 .1121 .0400 16x16

;:~: '
G3-LZG,3 6 .0895 .0370 1l6x16
SR-I..:’G'4 12 .0693 .0417 16x16
G3-L3G,4 12 .0750 .0381 16x16
NC-L3G,4 12 .0741 .0386 16x16
G3-L3G,6 18 .0672 .0370 16x16
S2G,3R 6 (-) .0608 .1525 16x16
S8 10 .4533 .2420 16x16
S3G,4R 12 (=) .0012 .1130 16x16
516 36 .4451 .2380 16x16

Lc ‘

516 36 . 3846 .2285 16x16
S2G,18R 36 .0611 .0366 16x16
S3G,128 36 .0562 .0344 16x16
.$2G,3Q 6 . +0336 .0641 16X16

i” SZG,3Q 6 (-) .0006 .0954 32X32
G3-LZG'3 6 .0658 .0319 32x32
G3-LJG,6 18 .0471 .0257 32x32

A Table X-1: Vacuum Duct: Error Norms for L. and S._ Results
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2. Convergence in Polar Quadrature

Increasing the accuracy of polar quadrature by increasing K

.

.’\

for product quadratures should improve level but have little effect on

»
-

e
D

W SRR R
ARy 3K

shape. This effect is seen in a comparison of SZG,laR and SBG,lZR' both

of which are essentially converged in azimuth. Also, the hybrid discrete

element method, G3-LZG 3 is significantly more accurate in level than
’

the corresponding G3-L method, but only a little better in shape,

2,3
LY Lo . . S . . .
Q} indicating its superiority in polar quadrature. The hybrid method is
! Tat
[0
F, more accurate and less expensive.
-.;

3. Convergence in Azimuthal Quadrature

Each of the product quadratures 52G,18R and S3G,12R use 36

ordinates per octant and thus have the same computational cost as 816'

Because they apply most of their effort to the difficult azimuthal

quadrature, and because they use a composite quadrature scheme

(composite midpoint rule) to treat the ill-behaved azimuthal flux

variations, they greatly outperform the conventional quadrature. The
azimuthal quadrature is converged at a shape norm of about .035-.038 for
the various product quadrature discrete elements and discrete ordinates
schemes tested, for a 16 cell by 16 cell spatial grid. Thus, to the
accuracy of this spatial quadrature, the G3-L scheme is essentially

2G,3

converged in azimuthal quadrature. The Simpson's rule method, however,

e I T
i SILAI

"%
24

is less effective, not being converged in shape at SR—L2G 3 The Newton-
4

Cotes rule method is as accurate as the Gauss-Legendre method, but costs

'37%2°5%

more to compute.
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By 4. Convergence of Spatial Quadrature
oay 20

Y

For the 16x16 grid, the spatial cell size is 1/8 mfp in width

T
AN :

.
PR B )

(Ax) and 1/4 mfp in height (Ay). The improvement in level (but not

shape) resulting from the use of the new linear characteristic method

_'
A l“ l" u" ’ E

with 816 indicates that the spatial quadrature is not converged. The

spatial grid was therefore refined to 32x32 for a limited number of
calculations.
The composite Gauss-Christoffel / quadruple-range quadrature,

S2G 30 was evaluated for both space mesh sizes. The level error
’

decreased with the refined spatial grid, but the shape error increased.
This inconsistent behavior, together with the average 19% pointwise
error, indicates that the nearly exact total leakage for the method is

coincidental, as for the S3G,4R'

The improvement in the G3-L method resulting from the spatial

2G,3

grid refinement was more significant than that resulting from a

refinement of the angular grid to G3-L (still on a 16x16 spatial

3G'6
grid). This improvement was both in level and in shape. The reasons for
these improvements are considered below. With this refined spatial grid,
further improvement was noted by then refining the angular mesh as well,
Eo G3-L3G,6'
Since the errors of shape and level remaining in the discrete

sc/sc

elements solutions, such as G3-L
2G,3

, are dominated by the spatial
quadrature, and since it was not possible to refine the spatial mesh to
convergence within the scope of this research, precise comparisons of
cost-effectiveness of the various schemes could not be made. A more

important consideration, perhaps, is the confidence level (in an

engineering sense) of the various methods, which is considered next.
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5. Confidence of Results

The foregoing discussions of accuracy and convergence have
implicitly presumed that the benchmark solution is known. From the
viewpoint of practical engineering, however, the objective of numerical
calculations is to estimate an (unknown) answer and its confidence
limits.

Taking this view, and supposing the duct problem is to be solved
only by the discrete ordinates method, the results obtained above lead
to a low level of confidence. Different families of gquadrature sets
apparently converge to different results, both in shape and level. The
convergence is inconsistent with respect to the two. In terms of the
error valleys that Lathrop described, the dilemma is simply stated: "how
is one to know which solutions are in the valley?"” As seen with the
total top-face leakage and the SKG,LR guadratures, the hills on one side
may be positive error while the hills on the other side of the valley
are negative error. The properly conservative engineering answer is that
the shield leakage is the median of the collection of discrete ordinates
results, to within a factor of about two (for this example). This is the

reason nuclear power reactor shielding is typically over-designed.

& 12

e

« 9% o

If this same engineering problem were to be solved by discrete

elements, however, the consistent convergence in polar, azimuthal, and

)

o s e

£ 126

spatial quadratures, toward the same answer, using different element

quadrature rules and different guadrature types (LKG L Vs LK L) allow a

» ’ ’
3;: much more useful conclusion to be drawn. The result can be estimated to
E}: a confidence of about plus or minus 10%. There may still be an "error
-y

) valley", but all the results in table X-1 are on one side >f it, and the
A .
N hills are lower.




D. Interaction of Spatial and Angular Quadrature

The discrete elements solutions for the vacuum duct problem were
not fully converged in spatial quadrature. As a consequence, the
auxiliary fluxes were not as accurate as possible, so that the coupling
of angular and spatial quadratures is not as effective as possible; The

errors of the G3-L sc¢/sc

2G. 3 solution were observed to be of three types:
14

1 - The leakage through the duct is overestimated by 20%-30%

2 - There is a slight hump to the curve at about x = 1.5 cm

3 - The leakage through the shield away from the duct is
overestimated by about 15%.

The second item is a ray effect and is eliminated by refining the
angular mesh, but the other two are quasi-ray effects, and are reduced
by refining the spatial mesh. The objective ¢“ this section is to
evaluate the causes of these quasi-ray effects and the possibilty of
reducing or eliminating them through the use of a higher order spatial
quadrature.

1. Leakage Through the Shield

Since it is a simpler problem, the overestimation of the
leakage through the shield, away from the vacuum duct, is considered
first. The step characteristic scheme assumes a flat source distribution

within each spatial cell. This source term is Q and includes scatter. As

the flux penetrates a shield,

it should be monotone decreasing,

the scatter-source should be decreasing across each cell

so that

(in the

direction of shield penetration). But, the step characteristic scheme
computes the cell-average value, redistributing Q uniformly across the

cell. This is a systematic error which consistently transports scattered

-
()

»

.

particles deeper into the shield, as shown in figure X-14A.

-l:l' l. l.
P AR
L R “

LY

s
Ed

U
N
[

»

. 8

A i
e
.

B
s a= * L PP A R PRI PSRRI S A IR P ST IR Y ST PRI PG D DA TR R W D, N




- — " i o ” s it St et Tl .‘v.i""“..‘.‘~"ﬂ.‘\?\_...‘. Mt .'__"T.'. MRS - LR - .'.‘.f'.'.'." B
Ot ) P e T DN Ve e ) A - . TN - .t - L R - . .

=
};: A: Step Characteristic B: Linear Characteristic
{ ‘ Exact
N —~— Approximate |
}_1': Q‘r Q+
.,-'_‘ -
. X > X -+
ﬁﬂ Fig. X-14: SC and LC Shield Penetration Errors
7{f The linear characteristic method models the scatter-source term, Q,
o as linearly varying across each spatial cell so as to approximate both
o its average and its first (spatial) moment. This eliminates, to the
ﬁi accuracy of the approximation, the systematic artificial transport of
s
‘qi particles into the shield, as shown in figure X-14B, It is expected,
J then, that use of the LC spatial quadrature with the discrete elements
_: method would substantially reduce the overestimation of the leakage
f; through the shield, away from the streaming duct.
: 2. Leakage Through the Duct
- The presence of the duct enhances overall leakage through the
- ‘
:} shield in two ways. Particles that originate below the duct (or scatter
i below the duct) may stream freely through the shield, provided only that J
:l they start in the right direction. This is illustrated as path A of
~
>,
~
}} figure X-15. Discrete ordinates 1is inaccurate for this problem because
%
&' few, if any, of the quadrature directions represent this path. Discrete
?} elements, however, can steer the streaming into this path. The second
L]
.\' I3 . 13 .
o~ effect of the duct is to decrease the optical thickness of the shield
P
AY
] for paths which cross through the duct and ultimately leak out through
e
e the main body of the shield, as illustrated by path B.
SO .
~.
S,
~.l
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." Fig. X-15: Paths Through the vacuum Duct
28
A}
~
- The discrete elements method errs in a different way in handling
o path B. The flux in an angular element at point C of figure X-15 would
.:: consist of mostly path A type particles with an admixture of some path B
-:: type particles, and would be represented by a flux-weighted average
e streaming direction such as D. Assuming analytic spatial quadrature were
'}j somehow employed, the particles in the element would be moved precisely
":{ in direction D; the result would be to walk the B's across the duct and
the A's up the duct. But, with step characteristic spatial quadrature,
this is not the result. Since direction D is close to the duct axis (y),
and hence far from the cell diagonal, the method is numerically
-. inaccurate and (as shown in section VI-C) walks the flux, like a chess
o,
144
< rook, straight up the duct. The renormalizing of the spatial
)
': distribution along the cell edge to a flat approximation moves the
-
, particles (falsely) to the left at each cell interface. The path B
&
‘o particles, in effect, become trapped in the duct and escape absorption.
&
a X-23
o
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The linear characteristic scheme would mimimize this form of error
by representing the flux along each cell interface with a linear fit
which, at least approximately, matches the average and the first
(spatial) moment along the cell boundary. This eliminates the flattening
process which moved particles leftward, and would allow the B's to eross
the duct and the A's to stream up the duct. The B's would not arrive at
the top of the duct, so that the overestimation of the duct leakage by
the step characteristic scheme should be largely eliminated. Since the
B's would be exposed to further absorption upon reentering the shield
material, only some would survive to leak through the shield, so that
the total leakage would be reduced. This same feature would reduce or
eliminate the quasi-ray effect of the SC scheme seen in the square-in-a-
square problems in sections VI-C and X-A.

The linear characteristic scheme is not merely higher order than
the step characteristic scheme, but it also corrects the specific
deficiencies which are the source of the errors observed in the discrete
elements solutions. Thus, the linear characteristic method is expected
to correct both the level and shape errors of the step characteristic
method, when used for both the main and auxiliary flux calculations of
the discrete element method.ﬂr A demonstration of the validity of this
iogic by actually programming the combined linear characteristic /
discrete elements method was beyond the scope of this project, but
refining the spatial mesh ameliorates the deficiencies of the SC scheme,
and was observed to improve both the shape and level of the results in

the manner anticipated from this analysis.

* The linear nodal method, recently developed by Walters and O'Dell
[Ref. 13] should also be appropriate for this application.
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E. Conclusions
" The conclusions derived from the one-dimensional test cases of
f} chapter IX have been further supported by the two-dimensional test cases
) ‘\
NN of this chapter. In respect to xy-geometry, specific conclusions are:
._-:.. s
L 1 - The hybrid Gauss-Christoffel (fixed) polar / equal weight
L composite (discrete element) azimuthal angular quadrature is most
\X efficient and accurate.
I\{l
2 - The minimum number of Gauss-Christoffel latitudes should be
J& two, since with only one latitude, the quadrature is not of high enough
g
}}j order to meet the diffusion limit. Numerical performance indicates the
o
e importance of this consideration.
d
#:J 3 - The coupling of angular and spatial quadrature by the mechanism
LN
]
L]
:3 of "steered" element fluxes is highly successful in ameliorating ray
- effects, provided at least three (azimuthal) elements are used.
ff 4 - The three-point Gauss-Legendre rule was the most effective
(o
‘{f element quadrature tested.
"
.
v \ 5 - As in chapter IX, the expectation that "the harder the problem,
";fl the more advantageous the discrete elements method" is supported by the
e
:{: evidence of these two tests.
N
6 - The discrete elements schemes showed better accuracy and more
}:3 consistent convergence toward the benchmark solution then the discrete
.
¢ o .
O ordinates schemes tested.
u:_‘-
. 7 - An evaluation of the full accuracy and cost-effectiveness of
- sl
I‘ * ] . s 1]
ﬁg the method will require the use of a spatial quadrature of higher order,
;¢$ compatible with the higher order of the discrete elements angular
xl
L2
s quadrature (in order to take full advantage of the angular-spatial
!’ Y
125 coupling).
ALY
2
y)
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f;; XI. Conclusions and Recommendations

el

o The objective of this research has begn to develop and demonstrate
;a *proof of concept" of the discrete elements method of numerical neutral
‘Eé particle transport. This chapter summarizes the conclusions which were
< drawn in the previous chapters and presents recommendations for use of
;: the discrete elements method and for further study.

i{ A. Conclusions

ii 1. sound Theoretical Basis

2

\.

The discrete elements method has a sound basis in numerical

analysis and transport theory. It is not an ad hoc fixup to discrete

ordinates.

2

of Fell
2,
o

2. Practical for Computer Implementation

The discrete elements algorithm retains the essential

P

- structure of the discrete ordinates method. Its requirements for

computer storage and run time are comparable to SN; in the absence of

n vacuum boundaries, LZG,3 uses 22% léss storage and run time than 516’
THE The method could be incorporated within existing production codes.

;?: 3. Amelioration of Ray Effects

:¢‘ The method is effective in ameliorating ray effects, but is
%é more sensitive to quasi-ray effects than discrete ordinates. In this
:i regard, a low-order L. method behaves like a high order S  method. Use

N

L

N

of high-order spatial quadrature should ameliorate the quasi-ray efiect.
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i:: 4. Accuracy

ii The method is consistently more accurate than SN with the same
e sc/scC .

Q" quadrature set. For example, G3-L2G 3 is more accurate than
A ’

AN SC

. For the vacuum duct problem, L

26, 3R

N ¥as the most consistently

accurate and convergent (as angular or spatial mesh is refined) method.

5. Cost Effectiveness

The discrete elements method is the most cost-effective
alternative for some problems. This was demonstrated in slab geometry,
but could not be fully demonstrated in xy-geometry since the spatial
guadrature dominated the remaining errors in the vacuum duct solutions.
The discrete elements method was more cost-effective than conventional
SN for the xy-geometry duct problem. Both theory and testing supported
the conjecture that the more difficult the problem, the more
advantageous the discrete elements method would be, as compared to SN'

6. Element Quadrature Rules

Gauss~Legendre three-point quadrature was consistently the
most effective element quadrature rule tested. It was more accurate and
cost-effective than Simpson's rule, and as accurate as Newton-Cotes

five-point rule, but less expensive.

7. Angular Quadrature for XY-Geometry

- . The hybrid Gauss-Christoffel (fixed) polar / equal weight

(steered) azimuthal gquadrature, was consistently more accurate

Lee,L’

and less expensive than the equal weight (steered) polar / equal weight

{steered) azimuthal quadrature, L_ _.

\.‘ K ’ L |
f? 8. Spatial Quadrature

One approach considered was to use the least expensive spatial

o
Kg quadrature available, the step method, for the auxiliary fluxes (used to
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steer the streaming directions of the element "main" flux) with the
consideration that any accuracy of steering would be better than none,

i.e., S and that the cheap auxiliary calculations could then give the

N’
best cost-effectiveness. This approach proved ineffective.

The alternative approach was to use the highest order, ﬁost
accurate spatial quadrature for both the auxiliary and main fluxes so
that with really precise steering, the method would produce sufficient
accuracy to pay for the expense of the high order auxiliary
calculations. This proved to be the case. In one-dimensional geometry,
the linear characteristic method produced the most accuracy and was more
cost-effective than Gauss-Legendre discrete ordinates. In two-
dimensional geometry, the most effective method tested was discrete
elements with step characteristic spatial quadrature.

An analysis of the gquasi-ray effect errors in the L26’3SC/SC
solution to the vacuum duct problem indicated that the use of linear

characteristic spatial quadrature for both the main and auxiliary fluxes

would reduce or eliminate those errors.

B. Recommended General Purpose Discrete Elements Schemes

From the experience gained in testing these methods, the following
“quadratures are recommended for general purpose application:

1-D (Slab): L 2-D (xy):

4 Ly,3

No three-dimensional codes were used, but based on its two-
dimensional performance and on the expectation that composite quadrature

with angle-space coupling is effective for ill-behaved distributions,

or is recommended for use in 3-D problems. These methods

L,.3 Ly,3

should all use Gauss-Legendre three-point element quadrature and the

highest order spatial quadrature available.
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C. Recommended Topics for Further Research

This initial study has developed the discrete elements method and
demonstrated some of its potential. Of necessity, many areas of interest
were not pursued. The following topics are recommended as being of most
value in developing the discrete elements method as a useful tool.

1. Evaluation with Higher Order Spatial Quadratures

A cost-effectiveness study of discrete elements in two-
dimensional geometry with linear characteristic or linear nodal spatial
quadrature and a range of test problems could further explore the value

of the method.

2. Extension to Curvilinear Coordinates

Characteristic quadratures have not been applied in
curvilinear coordinates. Step and diamond difference methods have been,
but the former is insufficiently accurate and the latter is
insufficiently smooth for use in discrete elements. Extension of the
method to curvilinear coordinates could be possible using the linear
discontinuous spatial quadratﬁre.

3. Extension to Anisotropic Scatter

Since the zeroth and first angular moments of the flux are
‘computed and used in the discrete ordinates method, including linearly
anisotropic scatter should be straightforward. Higher order anisotropy
could be included by approximating the higher moments by numerical
quadrature over each element as is done for the first moment, or
alternatively, the full collection of auxiliary fluxes could be used as
a single quadrature set to approximate the higher angular moments.

Research is needed to find the most accurate and least expensive scheme.
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4. Higher Order Space-Angle Coupling

v

;-

v
Is
LN

The discrete elements method developed here couples the

angular distribution to the spatial quadrature only through the mean

v s u,
PR
‘l";.“)'l'

streaming direction. In a sense, this is the first order member of a

TV
v

0

[4
‘b ‘l

family of discrete element methods, with discrete ordinates as the

XA
Al

zeroth order member. Higher order schemes could possibly be developed by
treating the flux distribution over each element of angle as a known
polynomial (from the auxiliary fluxes) and integrating that distribution
across the space cell analytically, as an element characteristic spatial
quadrature rather than the (steered) ordinate characteristic spatial
quadratures used here. Using the symbolic tensor algebra capabilities of
the MACSYMA system, such methods could conceivably be extended to
curvilinear coordinates. Such higher order schemes would abandon some of
the algorithmic simplicity of SN and LN' but could allow the use of
coarse spatial grids and still provide acceptable accuracy. Such a
hybrid of discrete ordinates, finite elements, and space-angle synthesis

might prove highly effective.
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